MHC class Ib antigen (predicted) [Rattus norvegicus]
immunoglobulin domain-containing family protein( domain architecture ID 34076)
immunoglobulin (Ig) domain-containing family protein is a member of a large superfamily containing cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine receptors and intracellular muscle proteins; immunoglobulin domains are typically divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets
List of domain hits
Name | Accession | Description | Interval | E-value | ||
Ig super family | cl11960 | Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found ... |
1-47 | 9.23e-27 | ||
Immunoglobulin domain; The members here are composed of the immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a heterogenous group of proteins, built on a common fold comprised of a sandwich of two beta sheets. Members of this group are components of immunoglobulin, neuroglia, cell surface glycoproteins, including T-cell receptors, CD2, CD4, CD8, and membrane glycoproteins, including butyrophilin and chondroitin sulfate proteoglycan core protein. A predominant feature of most Ig domains is a disulfide bridge connecting the two beta-sheets with a tryptophan residue packed against the disulfide bond. Ig superfamily (IgSF) domains can be divided into 4 main classes based on their structures and sequences: the Variable (V), Constant 1 (C1), Constant 2 (C2), and Intermediate (I) sets. Typically, the V-set domains have A, B, E, and D strands in one sheet and A', G, F, C, C' and C" in the other. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other by strands G, F, C, and C'. Moreover, a C1-set Ig domain contains a short C' strand (three residues) and lacks A' and C" strand. Unlike other Ig domain sets, C2-set structures do not have a D strand. Like the V-set Ig domains, members of the I-set have a discontinuous A strand, but lack a C" strand. The actual alignment was detected with superfamily member cd07698: Pssm-ID: 472250 Cd Length: 92 Bit Score: 93.45 E-value: 9.23e-27
|
||||||
Name | Accession | Description | Interval | E-value | ||
IgC1_MHC_I_alpha3 | cd07698 | Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; ... |
1-47 | 9.23e-27 | ||
Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409495 Cd Length: 92 Bit Score: 93.45 E-value: 9.23e-27
|
||||||
IGc1 | smart00407 | Immunoglobulin C-Type; |
4-42 | 1.30e-05 | ||
Immunoglobulin C-Type; Pssm-ID: 214651 Cd Length: 75 Bit Score: 39.22 E-value: 1.30e-05
|
||||||
Name | Accession | Description | Interval | E-value | ||
IgC1_MHC_I_alpha3 | cd07698 | Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; ... |
1-47 | 9.23e-27 | ||
Class I major histocompatibility complex (MHC) alpha chain, alpha3 immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409495 Cd Length: 92 Bit Score: 93.45 E-value: 9.23e-27
|
||||||
IgC1_MHC_Ia_HLA-F | cd21023 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
2-50 | 4.82e-25 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) F; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen alpha chain F (HLA-F). HLA-F, encoded by the HLA-F gene in humans, belongs to the non-classical HLA class I heavy chain paralogs. This class I molecule mainly exists as a heterodimer associated with the invariant light chain beta-2-microglobulin. HLA-F molecules can interact with both activating and inhibitory receptors on immune cells, such as NK cells, and can present a diverse panel of peptides. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409614 Cd Length: 98 Bit Score: 89.10 E-value: 4.82e-25
|
||||||
IgC1_MHC_1b_Qa-1b | cd21820 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-1b; member of the ... |
1-49 | 7.76e-24 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-1b; member of the C1-set of Ig superfamily (IgSF) domains; The non-classical mouse MHC class I (MHC-I) molecule Qa-1b is a non-polymorphic MHC molecule with an important function in innate immunity. It binds and presents signal peptides of classical MHC-I molecules at the cell surface and, as such, act as an indirect sensor for the normal expression of MHC-I molecules. This signal peptide dominantly accommodated in the groove of Qa-1b is called Qdm, for Qa-1 determinant modifier, and its amino acid sequence AMAPRTLLL is highly conserved among mammalian species. The Qdm/Qa-1b complex serves as a ligand for the germ-line encoded heterodimeric CD94/NKG2A receptors expressed on natural killer (NK) cells and activated CD8+ T cells and transduces inhibitory signals to these lymphocytes. Thus, upon binding, Qa-1b signals NK cells not to engage in cell lysis. The molecular basis of Qa-1b function is unclear. Pssm-ID: 409625 Cd Length: 98 Bit Score: 86.36 E-value: 7.76e-24
|
||||||
IgC1_MHC_Ia_HLA-B | cd21026 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
2-49 | 1.68e-23 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) B and similar proteins; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) B and similar proteins. The classical class I molecules (HLA-A, -B, and -C) are responsible for the presentation of endogenous antigen to CD8+ T cells. The receptor is a heterodimer, and is composed of a heavy alpha chain and smaller beta chain. The alpha chain is encoded by a variant HLA-B gene, and the beta chain (beta-2-microglobulin) is an invariant beta-2-microglobulin molecule. The beta-2-microglobulin protein is coded for by a separate region of the human genome. Human leukocyte antigen (HLA) B*3501 (B35) is a common human allele involved in mediating protective immunity against HIV. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409617 Cd Length: 97 Bit Score: 85.25 E-value: 1.68e-23
|
||||||
IgC1_MHC_Ia_HLA-G | cd21022 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
1-47 | 1.81e-23 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) G; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) G. HLA-G histocompatibility antigen (also known as human leukocyte antigen G ; HLA-G) is a protein that in humans is encoded by the HLA-G gene. HLA-G belongs to the HLA nonclassical class I heavy chain paralogs. This class I molecule is a heterodimer consisting of a heavy chain and light chain, beta-2-microglobulin. The heavy chain is anchored in the membrane. HLA-G may play a role in immune tolerance in pregnancy, being expressed in the placenta by extravillous trophoblast cells (EVT), while the classical MHC class I genes (HLA-A and HLA-B) are not. Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I and class II. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. MHC class II molecules play a key role in the initiation of the antigen-specific immune repose. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes, and they are expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway, of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain had two globular domains (N- and C-terminal), and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409613 Cd Length: 94 Bit Score: 85.20 E-value: 1.81e-23
|
||||||
IgC1_MHC_Ib_T10_T22_like | cd21016 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of T10, T22, and similar ... |
1-49 | 3.14e-23 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of T10, T22, and similar proteins; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of the murine H-2T-encoded T10, T22, and similar proteins. T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. Classical MHC class I (class Ia) molecules participate in immune responses by presenting peptide antigens to cytolytic alpha beta T cells. Many nonclassical MHC class I (class Ib) molecules have distinct antigen-binding capabilities, suggesting that they have evolved for specific tasks that are distinct from those of MHC class Ia. Members of the IgC family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. Pssm-ID: 409607 Cd Length: 97 Bit Score: 84.77 E-value: 3.14e-23
|
||||||
IgC1_MHC_Ib_Qa-1 | cd21013 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-1 and similar ... |
1-49 | 5.17e-23 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-1 and similar proteins; member of the C1-set of Ig superfamily (IgSF) domains; Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-1 and similar proteins. Qa-1 presents hydrophobic peptides including Qdm derived from the leader sequence of classical MHC I molecules for immune surveillance by NK cells. Qa-1 bound peptides derived from the TCR Vbeta8.2 of activated T cells also activates CD8+ regulatory T cells to control autoimmunity and maintain self-tolerance. Four allotypes of Qa-1 (Qa-1a-d) are expressed that are highly conserved in sequence but have several variations that could affect peptide binding to Qa-1 or TCR recognition. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409604 Cd Length: 97 Bit Score: 84.02 E-value: 5.17e-23
|
||||||
IgC1_MHC_Ib_HLA-Cw3-4 | cd21025 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of HLA-Cw3 and HLA-Cw4; ... |
2-48 | 6.52e-23 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of HLA-Cw3 and HLA-Cw4; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of HLA-Cw3 and HLA-Cw4. HLA-C belongs to the MHC class I heavy chain receptors. The C receptor is a heterodimer consisting of a HLA-C mature gene product and beta-2-microglobulin. The mature C chain is anchored in the membrane. MHC Class I molecules, like HLA-C, are expressed in nearly all cells, and present small peptides to the immune system which surveys for non-self peptides. HLA-C is a locus on chromosome 6, which encodes for a large number of HLA-C alleles that are Class-I MHC receptors. Class Ib histocompatibility leukocyte antigens (HLA)-Cw3 and (HLA)-Cw4 are ligands for the natural killer (NK) cell inhibitory receptors KIR2DL2 and KIR2DL1, respectively. HLA-Cw3 and related alleles (HLA-Cw1, -Cw7, and -Cw8) contain Ser77 and Asn80 and interact with KIR that are reactive with the GL183 antibody Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. HLA-Cw4 and related alleles (HLA-Cw2, -Cw5, and -Cw6) have Asn77 and Lys80 and are recognized by KIR reactive with the EB6 15 or HP-3E4 16 antibody. Members of the IgC family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, and the IgC domain is involved in oligomerization and molecular interactions. Pssm-ID: 409616 Cd Length: 96 Bit Score: 83.70 E-value: 6.52e-23
|
||||||
IgC1_MHC_Ia_HLA-A | cd21027 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
2-47 | 1.03e-22 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) A; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) A. The classical class I molecules (HLA-A, -B, and -C) are responsible for the presentation of endogenous antigen to CD8+ T cells. The receptor is a heterodimer, and is composed of a heavy alpha chain and smaller beta chain. The alpha chain is encoded by a variant HLA-A gene, and the beta chain (beta-2-microglobulin) is an invariant beta-2-microglobulin molecule. The beta-2-microglobulin protein is coded for by a separate region of the human genome. HLA-A2 is associated with spontaneous abortions, HIV, and Hodgkin lymphoma. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409618 Cd Length: 95 Bit Score: 83.35 E-value: 1.03e-22
|
||||||
IgC1_MHC_Ia_H-2Kb | cd21019 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H-2Kb; member of the ... |
1-47 | 1.85e-22 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H-2Kb; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H-2Kb. H-2Kb is an alloantigen for the 2C T cell receptor (TCR). H-2Kb forms a complex with beta-2-microglobulin, and a peptide, including VSV-8 (RGYVYNGL), SEV-9 (FAPGNYPAL), and OVA-8 (SIINFEKL). Comparison of the OVA-8, VSV-8, and SEV-9 complexes with H-2Kb indicates that four side chains (Lys-66, Glu-152, Arg-155, and Trp-167) adopt peptide-specific conformations. H-2Kb paralogs include H-2Db, H-2Kbml and H-2KbI1s. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409610 Cd Length: 94 Bit Score: 82.46 E-value: 1.85e-22
|
||||||
IgC1_MHC_Ia_H2Db_H2Ld | cd21018 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
1-47 | 2.60e-22 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) H2Db and H2Ld; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) H2Db and H2Ld. H-2Ld complexed with peptide QL9 (or p2Ca) and complexed with influenza virus peptide NP366-374 (ASNEN-METM), respectively are high-affinity alloantigens for the 2C T cell receptor (TCR). The a1-a2 super domains of H-2Ld, H-2Db, and H-2Kb closely superimpose. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409609 Cd Length: 95 Bit Score: 82.10 E-value: 2.60e-22
|
||||||
IgC1_MHC_H-2_TLA | cd21012 | H-2 class I histocompatibility complex TLA (thymus leukemia antigen); member of the C1-set of ... |
2-47 | 1.43e-21 | ||
H-2 class I histocompatibility complex TLA (thymus leukemia antigen); member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the major histocompatibility complex (MHC) H-2 class I histocompatibility complex TLA (thymus leukemia antigen). The murine MHC class I histocompatibility TLA (Thymus leukemia antigen), which is encoded in the T region by T3 and T18 genes, is expressed mainly by intestinal epithelial cells and thymocytes. The murine TLAs are class I, beta-2-microglobulin-associated glycoproteins. The TLA function is not defined by antigen presentation, but rather by its relatively high affinity binding to CD8-alpha-alpha compared with CD8-alpha-beta. The existence of a human homolog for murine TLA remains unresolved. This group is a member of the C1-set Ig domains, which have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409603 Cd Length: 95 Bit Score: 80.55 E-value: 1.43e-21
|
||||||
IgC1_MHC_Ia_H-2Dd | cd21020 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H2-Dd; member of the ... |
1-47 | 3.01e-21 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H2-Dd; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of H2-Dd. Mouse MHC is composed of 11 subclasses. It includes the classical MHC class I (MHC-Ia) that comprises H-2D, H-2K and H-2L subclasses, the non-classical MHC class I (MHCIb) that comprises H-2Q, H-2M and H-2T subclasses, the classical MHC class II (MHC-IIa) that includes H-2A(I-A) and H-2E(I-E) subclasses, and the non-classical MHC class II (MHC-IIb) comprises H-2M and H-2O. H-2K, H-2D, and H-2L are 80 to 90% homologous at the amino acid level yet appear to be involved in different recognition reactions and are differentially expressed on lymphoid cells. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409611 Cd Length: 95 Bit Score: 79.42 E-value: 3.01e-21
|
||||||
IgC1_MHC_Ib_Qa-2 | cd21014 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-2; member of the ... |
1-47 | 3.30e-21 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of Qa-2; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of QA-2. Qa-2 is a nonclassical MHC Ib antigen, which has been implicated in both innate and adaptive immune responses, as well as embryonic development. Qa-2 has an unusual peptide binding specificity in that it requires two dominant C-terminal anchor residues and is capable of associating with a substantially more diverse array of peptide sequences than other nonclassical MHC. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409605 Cd Length: 94 Bit Score: 79.41 E-value: 3.30e-21
|
||||||
IgC1_MHC_Ib_HLA-E | cd21024 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
2-47 | 1.95e-20 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) E; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen (HLA) E. HLA-E is the first human class Ib major histocompatibility complex molecule to be crystallized. Like other MHC class I molecules, HLA-E is a heterodimer consisting of an a heavy chain and light chain beta-2-microglobulin. HLA-E is highly conserved and almost nonpolymorphic, and has recently been shown to be the first specialized ligand for natural killer cell receptors. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409615 Cd Length: 95 Bit Score: 77.52 E-value: 1.95e-20
|
||||||
IgC1_MHC_Ia_RT1-Aa | cd21015 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of RT1-Aa; member of the ... |
1-48 | 2.37e-20 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of RT1-Aa; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of RT1-Aa. While most mammalian species transport these peptides into the ER via a single allele of TAP, rats have evolved different TAPs, TAP-A and TAP-B, RT1-Aa and RT1-A1c, which are associated with TAP-A and TAP-B. The rat MHC class Ia molecule RT1-Aa has the unusual capacity to bind long peptides ending in arginine, such as MTF-E, a thirteen-residue, maternally transmitted minor histocompatibility antigen. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409606 Cd Length: 95 Bit Score: 77.11 E-value: 2.37e-20
|
||||||
IgC1_MHC_Ib_HLA-H | cd21021 | Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte ... |
8-47 | 8.85e-13 | ||
Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen H; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ib major histocompatibility complex (MHC) immunoglobulin domain of human leukocyte antigen H (HLA-H). HLA-H (also known as hereditary hemochromatosis protein; HFE) is a major histocompatibility complex (MHC) class I-like protein that is mutated in Hereditary Hemochromatosis. HFE is a protein of 343 amino acids that includes a signal peptide, an extracellular transferrin receptor-binding region (a1 and a2), an immunoglobulin-like domain (a3), a transmembrane region, and a short cytoplasmic tail. HFE binds beta-2-microglobulin to form a heterodimer expressed at the cell surface. It binds transferrin receptor (TFRC) in its extracellular alpha1-alpha2 domain. HFE plays an important part in the regulation of hepcidin expression in response to iron overload and the liver is important in the pathophysiology of HFE-associated hemochromatosis. Nine HFE splicing variants have been reported with transcripts lacking exon 2 or exon 3, or exons 2-3, 2-4, or 2-5. Diverse mutations involving HFE introns and exons discovered in persons with hemochromatosis or their family members cause or probably cause high iron phenotypes. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409612 Cd Length: 94 Bit Score: 57.86 E-value: 8.85e-13
|
||||||
IgC1_MHC-like_FcRn | cd21011 | immunoglobulin domain of neonatal Fc receptor, major histocompatibility complex (MHC)-like; ... |
8-43 | 1.84e-12 | ||
immunoglobulin domain of neonatal Fc receptor, major histocompatibility complex (MHC)-like; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin domain of neonatal Fc receptor (FcRn). FcRn performs two distinct functions: the transport of maternal immunoglobulin G (IgG) to pre- or neonatal mammals which provides passive immunity and protection of IgG from normal serum protein catabolism. FcRn is related to class I MHC proteins, but lacks a functional peptide binding groove. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409602 Cd Length: 93 Bit Score: 57.05 E-value: 1.84e-12
|
||||||
IgC1_MHC-like_ZAG | cd21010 | Immunoglobulin domain of Zn-alpha2-glycoprotein (ZAG); member of the C1-set of Ig superfamily ... |
8-47 | 1.57e-10 | ||
Immunoglobulin domain of Zn-alpha2-glycoprotein (ZAG); member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin domain of Zn-alpha2-glycoprotein (ZAG). ZAG is a soluble protein that is present in serum and other body fluids. ZAG stimulates lipid degradation in adipocytes and causes the extensive fat losses associated with some advanced cancers. The 2.8 angstrom crystal structure of ZAG resembles a class I major histocompatibility complex (MHC) heavy chain, but ZAG does not bind the class I light chain beta-2-microglobulin. The ZAG structure includes a large groove analogous to class I MHC peptide binding grooves. Instead of a peptide, the ZAG groove contains a nonpeptidic compound that may be implicated in lipid catabolism under normal or pathological conditions. IgC_MHC_I_alpha3; Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409601 Cd Length: 93 Bit Score: 51.94 E-value: 1.57e-10
|
||||||
IgC1_CD1 | cd21029 | Immunoglobulin domain of Cluster of Differentiation (CD) 1; member of the C1-set of Ig ... |
5-47 | 2.65e-10 | ||
Immunoglobulin domain of Cluster of Differentiation (CD) 1; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin domain of Cluster of Differentiation (CD) 1. CD1 family of transmembrane glycoproteins, are structurally related to the major histocompatibility complex (MHC) proteins and form heterodimers with beta-2-microglobulin. They mediate the presentation of primarily lipid and glycolipid antigens of self or microbial origin to T cells. The human genome contains five CD1 family genes (CD1a, CD1b, CD1c, CD1d, and CD1e) organized in a cluster on chromosome 1. The CD1 family members are thought to differ in their cellular localization and specificity for particular lipid ligands. CD1a localizes to the plasma membrane and to recycling vesicles of the early endocytic system. Alternative splicing results in multiple transcript variants. Immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. C1-set Ig domains have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409620 Cd Length: 93 Bit Score: 51.55 E-value: 2.65e-10
|
||||||
IgC1 | cd00098 | Immunoglobulin Constant-1 (C1)-set domain; The members here are composed of C1-set domains, ... |
5-47 | 8.12e-07 | ||
Immunoglobulin Constant-1 (C1)-set domain; The members here are composed of C1-set domains, classical Ig-like domains resembling the antibody constant domain. Members of the IgC1 family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding, while the IgC domain is involved in oligomerization and molecular interactions. The structures in C1-set are smaller than those in the V-set; they have one beta sheet that is formed by strands A, B, E, and D and the other strands by G, F, C, and C'. Pssm-ID: 409354 Cd Length: 95 Bit Score: 42.83 E-value: 8.12e-07
|
||||||
IgC1_MHC_Ia_MIC-A_MIC-B | cd21017 | Class Ia major histocompatibility complex (MHC) immunoglobulin domain of MIC-A and MIC-B; ... |
8-38 | 8.39e-07 | ||
Class Ia major histocompatibility complex (MHC) immunoglobulin domain of MIC-A and MIC-B; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the Class Ia major histocompatibility complex (MHC) immunoglobulin domain of MIC-A and MIC-B. MIC-A and MIC-B are homologs that serve as stress-inducible antigens on epithelial and epithelially derived cells. Both serve as ligands for the widely expressed activating immunoreceptor NKG2D, a C-type lectin-like activating immunoreceptor. MIC-B is very similar in structure to MIC-A and likely interacts with NKG2D in an analogous manner. The interdomain flexibility observed in the MIC-A structures, a feature unique to MIC proteins among MHC class I proteins and homologs, is also displayed by MIC-B, with an interdomain relationship intermediate between the two examples of MIC-A structures. Mapping sequence variations onto the structures of MIC-A and MIC-B reveals patterns completely distinct from those displayed by classical MHC class I proteins, with a number of substitutions falling on positions likely to affect interactions with NKG2D, but with other positions lying distant from the NKG2D binding sites or buried within the core of the proteins. Members of the IgC family are components of immunoglobulin, T-cell receptors, CD1 cell surface glycoproteins, secretory glycoproteins A/C, and major histocompatibility complex (MHC) class I/II molecules. In immunoglobulins, each chain is composed of one variable domain (IgV) and one or more IgC domains. These names reflect the fact that the variability in sequences is higher in the variable domain than in the constant domain. The IgV domain is responsible for antigen binding and the IgC domain is involved in oligomerization and molecular interactions. Pssm-ID: 409608 Cd Length: 95 Bit Score: 42.90 E-value: 8.39e-07
|
||||||
IGc1 | smart00407 | Immunoglobulin C-Type; |
4-42 | 1.30e-05 | ||
Immunoglobulin C-Type; Pssm-ID: 214651 Cd Length: 75 Bit Score: 39.22 E-value: 1.30e-05
|
||||||
IgC1_MHC_I_M144 | cd21028 | Class I major histocompatibility complex (MHC) homolog m144; member of the C1-set of Ig ... |
8-48 | 8.12e-05 | ||
Class I major histocompatibility complex (MHC) homolog m144; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) homolog m144 class I alpha chain. Class I MHC proteins bind antigenic peptide fragments and present them to CD8+ T lymphocytes. Class I molecules consist of a transmembrane alpha chain and a small chain called the beta-2-microglobulin. The alpha chain contains three extracellular domains, two of which fold together to form the peptide-binding cleft (alpha1 and alpha2), and one which has an Ig fold (alpha3). Peptide binding to class I molecules occurs in the endoplasmic reticulum (ER) and involves both chaperones and dedicated factors to assist in peptide loading. Class I MHC molecules are expressed on most nucleated cells. Pssm-ID: 409619 Cd Length: 101 Bit Score: 37.68 E-value: 8.12e-05
|
||||||
IgC1_Tapasin_R | cd05771 | Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; ... |
12-43 | 4.94e-04 | ||
Tapasin-R immunoglobulin-like domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin-like domain on Tapasin-R. Tapasin is a V-C1 (variable-constant) immunoglobulin superfamily molecule present in the endoplasmic reticulum (ER), where it links MHC class I molecules to the transporter associated with antigen processing (TAP). Tapasin-R is a tapasin-related protein that contains similar structural motifs to Tapasin, with some marked differences, especially in the V domain, transmembrane and cytoplasmic regions. The majority of Tapasin-R is located within the ER; however, there may be some expression of Tapasin-R at the cell surface. Tapasin-R lacks an obvious ER retention signal. Pssm-ID: 409428 Cd Length: 100 Bit Score: 35.55 E-value: 4.94e-04
|
||||||
IgC1_MHC_II_beta | cd05766 | Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain; member of ... |
8-48 | 8.87e-03 | ||
Class II major histocompatibility complex (MHC) beta chain immunoglobulin domain; member of the C1-set of Ig superfamily (IgSF) domains; The members here are composed of the immunoglobulin (Ig) domain of major histocompatibility complex (MHC) class II beta chain. MHC class II molecules play a key role in the initiation of the antigen-specific immune reponse. These molecules have been shown to be expressed constitutively on the cell surface of professional antigen-presenting cells (APCs), including B-lymphocytes, monocytes, and macrophages in both humans and mice. The expression of these molecules has been shown to be induced in nonprofessional APCs such as keratinocyctes and they are also expressed on the surface of activated human T cells and on T cells from other species. The MHC II molecules present antigenic peptides to CD4(+) T-lymphocytes. These peptides derive mostly from proteolytic processing via the endocytic pathway of antigens internalized by the APC. These peptides bind to the MHC class II molecules in the endosome before they are transported to the cell surface. MHC class II molecules are heterodimers, comprised of two similarly-sized membrane-spanning chains, alpha and beta. Each chain has two globular domains (N- and C-terminal) and a membrane-anchoring transmembrane segment. The two chains form a compact four-domain structure. The peptide-binding site is a cleft in the structure. Pssm-ID: 409423 Cd Length: 96 Bit Score: 32.30 E-value: 8.87e-03
|
||||||
Blast search parameters | ||||
|