epididymal-specific lipocalin-6 precursor [Rattus norvegicus]
lipocalin/fatty acid-binding family protein( domain architecture ID 3669)
lipocalin/fatty acid-binding family protein contains a large beta-barrel cavity that binds hydrophobic ligands
List of domain hits
Name | Accession | Description | Interval | E-value | |||
lipocalin_FABP super family | cl10502 | lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low ... |
21-164 | 2.71e-104 | |||
lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules as well as membrane bound-receptors. They have a large beta-barrel ligand-binding cavity. Members include retinol-binding protein, retinoic acid-binding protein, complement protein C8 gamma, Can f 2, apolipoprotein D, extracellular fatty acid-binding protein, beta-lactoglobulin, oderant-binding protein, and bacterial lipocalin Blc. Lipocalins are involved in many important processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty acid-binding proteins also bind hydrophobic ligands in a non-covalent, reversible manner, and are involved in protection and shuttling of fatty acids within the cell, and in acquisition and removal of fatty acids from intracellular sites. The actual alignment was detected with superfamily member cd19426: Pssm-ID: 471979 Cd Length: 144 Bit Score: 295.37 E-value: 2.71e-104
|
|||||||
Name | Accession | Description | Interval | E-value | |||
lipocalin_6 | cd19426 | Epididymal-specific lipocalin-6; Epididymal-specific lipocalin-6 (LCN6) may play a role in ... |
21-164 | 2.71e-104 | |||
Epididymal-specific lipocalin-6; Epididymal-specific lipocalin-6 (LCN6) may play a role in male fertility. It belongs to the lipocalin/cytosolic fatty-acid binding protein family which has a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381201 Cd Length: 144 Bit Score: 295.37 E-value: 2.71e-104
|
|||||||
Lipocalin | pfam00061 | Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small ... |
33-161 | 8.52e-08 | |||
Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The family also encompasses the enzyme prostaglandin D synthase (EC:5.3.99.2). Alignment subsumes both the lipocalin and fatty acid binding protein signatures from PROSITE. This is supported on structural and functional grounds. The structure is an eight-stranded beta barrel. Pssm-ID: 395015 Cd Length: 143 Bit Score: 48.98 E-value: 8.52e-08
|
|||||||
Name | Accession | Description | Interval | E-value | |||
lipocalin_6 | cd19426 | Epididymal-specific lipocalin-6; Epididymal-specific lipocalin-6 (LCN6) may play a role in ... |
21-164 | 2.71e-104 | |||
Epididymal-specific lipocalin-6; Epididymal-specific lipocalin-6 (LCN6) may play a role in male fertility. It belongs to the lipocalin/cytosolic fatty-acid binding protein family which has a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381201 Cd Length: 144 Bit Score: 295.37 E-value: 2.71e-104
|
|||||||
lipocalin_L-PGDS | cd19419 | lipocalin-type prostaglandin D synthase; Lipocalin-type prostaglandin D synthase (L-PGDS; EC:5. ... |
28-162 | 1.58e-18 | |||
lipocalin-type prostaglandin D synthase; Lipocalin-type prostaglandin D synthase (L-PGDS; EC:5.3.99.2) is a secreted enzyme and the second most abundant protein in human cerebrospinal fluid. L-PGDS acts as both, an enzyme and as a lipid transporter, converting prostaglandin H2 to prostaglandin D2 and serving as a carrier for hydrophobic ligands including retinoids, hemoglobin metabolites, thyroid hormones, gangliosides, and fatty acids. L-PGDS belongs to the lipocalin/cytosolic fatty-acid binding protein family which has a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381194 Cd Length: 158 Bit Score: 77.78 E-value: 1.58e-18
|
|||||||
lipocalin_15-like | cd19422 | lipocalin 15 and similar proteins, such as chicken CALbeta; This subfamily includes ... |
31-171 | 2.91e-17 | |||
lipocalin 15 and similar proteins, such as chicken CALbeta; This subfamily includes uncharacterized human lipocalin 15, and chicken chondrogenesis-associated lipocalin (CAL) beta which is associated with chondrogenesis and inflammation. It belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381197 Cd Length: 143 Bit Score: 74.13 E-value: 2.91e-17
|
|||||||
lipocalin_FABP | cd00301 | lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low ... |
31-140 | 1.76e-15 | |||
lipocalin/cytosolic fatty acid-binding protein family; Lipocalins are diverse, mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules as well as membrane bound-receptors. They have a large beta-barrel ligand-binding cavity. Members include retinol-binding protein, retinoic acid-binding protein, complement protein C8 gamma, Can f 2, apolipoprotein D, extracellular fatty acid-binding protein, beta-lactoglobulin, oderant-binding protein, and bacterial lipocalin Blc. Lipocalins are involved in many important processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty acid-binding proteins also bind hydrophobic ligands in a non-covalent, reversible manner, and are involved in protection and shuttling of fatty acids within the cell, and in acquisition and removal of fatty acids from intracellular sites. Pssm-ID: 381182 Cd Length: 109 Bit Score: 68.73 E-value: 1.76e-15
|
|||||||
Lipocalin | pfam00061 | Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small ... |
33-161 | 8.52e-08 | |||
Lipocalin / cytosolic fatty-acid binding protein family; Lipocalins are transporters for small hydrophobic molecules, such as lipids, steroid hormones, bilins, and retinoids. The family also encompasses the enzyme prostaglandin D synthase (EC:5.3.99.2). Alignment subsumes both the lipocalin and fatty acid binding protein signatures from PROSITE. This is supported on structural and functional grounds. The structure is an eight-stranded beta barrel. Pssm-ID: 395015 Cd Length: 143 Bit Score: 48.98 E-value: 8.52e-08
|
|||||||
lipocalin_5_8-like | cd19421 | lipocalin similar to human epididymal-specific lipocalin-8, mouse lipocalin-5 and -8, and ... |
25-181 | 9.57e-08 | |||
lipocalin similar to human epididymal-specific lipocalin-8, mouse lipocalin-5 and -8, and similar proteins; Lipocalin 5 (LCN5; also known as epididymal retinoic acid binding protein Erabp, mouse epididymal protein 10, MEP10, and E-RABP) and Lipocalin 8 (LCN8; also known as mouse epididymal protein 17, MEP17) are homologous proteins belonging to the epididymis-specific lipocalins; they may play a role in male fertility, and may act as retinoid carrier proteins within the epididymis. In mice, genes encoding the two proteins are contiguous; in humans, there is one gene LCN8 (which has been previously called LCN5). This group belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381196 Cd Length: 150 Bit Score: 49.14 E-value: 9.57e-08
|
|||||||
lipocalin_Ex-FABP-like | cd19439 | extracellular fatty acid-binding protein; Ex-FABP (also known as siderocalin, lipocalin Q83 or ... |
31-154 | 1.08e-07 | |||
extracellular fatty acid-binding protein; Ex-FABP (also known as siderocalin, lipocalin Q83 or protein Ch21) displays a dual ligand binding mode as it can bind siderophore and fatty acids simultaneously. ExFABP has a cavity which extends through the protein and has two separate ligand specificities, one for bacterial siderophores at one end, and other specifically binding co-purified lysophosphatidic acid (LPA), a potent cell signaling molecule, at the other end. As well as acting as an LPA "sensor", Ex-FABP is bacteriostatic, and tightly binds the 2,3-catechol-type ferric siderophores enterobactin, bacillibactin, and parabactin, associated with enteric bacteria and Gram-positive bacilli. This group belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381214 Cd Length: 142 Bit Score: 48.82 E-value: 1.08e-07
|
|||||||
lipocalin_10-like | cd19425 | Epididymal-specific lipocalin-10 and similar proteins; Epididymal-specific lipocalin-10 (LCN10) ... |
34-141 | 5.57e-07 | |||
Epididymal-specific lipocalin-10 and similar proteins; Epididymal-specific lipocalin-10 (LCN10) may play a role in male fertility, and may act as a retinoid carrier protein within the epididymis. It belongs to the lipocalin/cytosolic fatty-acid binding protein family which has a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381200 Cd Length: 111 Bit Score: 46.11 E-value: 5.57e-07
|
|||||||
lipocalin_2-like | cd19457 | lipocalin 2 and similar proteins; Lipocalin-2 (LCN2, also known as siderocalin, uterocalin, ... |
31-161 | 1.86e-06 | |||
lipocalin 2 and similar proteins; Lipocalin-2 (LCN2, also known as siderocalin, uterocalin, oncogene 24p3, and neutrophil gelatinase-associated lipocalin) is expressed in renal, endothelial, liver, smooth muscle cells, cardiomyocytes, in various populations of immune cells and dendritic cells. Roles ascribed to LCN2, include chemotactic and bacteriostatic effects, and iron trafficking. LCN2 can also act as a growth factor. It plays an key role in the pathophysiology of renal and cardiovascular diseases, and is involved in various deleterious processes, such as inflammation and fibrosis. It is used as a renal injury biomarker. This subgroup belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381232 Cd Length: 173 Bit Score: 45.82 E-value: 1.86e-06
|
|||||||
lipocalin_C8gamma | cd19417 | complement protein C8 gamma; Human complement protein C8 gamma, together with C8alpha and ... |
25-141 | 1.08e-05 | |||
complement protein C8 gamma; Human complement protein C8 gamma, together with C8alpha and C8beta, form one of five components of the cytolytic membrane attack complex (MAC), a pore-like structure that assembles on bacterial membranes. C8alpha and C8gamma form a disulfide-linked heterodimer that is noncovalently associated with C8beta. MAC plays an important role in the defense against gram-negative bacteria and other pathogenic organisms. C8gamma belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381192 Cd Length: 162 Bit Score: 43.58 E-value: 1.08e-05
|
|||||||
lipocalin_A1M-like | cd19418 | lipocalin domain of alpha1-microglobulin and similar proteins; Alpha(1)-microglobulin (A1M, ... |
31-141 | 2.04e-04 | |||
lipocalin domain of alpha1-microglobulin and similar proteins; Alpha(1)-microglobulin (A1M, also known as protein AMBP, alpha-1 microglycoprotein, and protein HC), has immunosuppressive properties, such as inhibition of antigen induced lymphocyte cell-proliferation, cytokine secretion, and oxidative burst of neutrophils. A1M may participate in the reducing and scavenging of biological pro-oxidants such as heme and heme-proteins. It binds heme strongly, and a C-terminally processed form of the protein degrades the heme. It can reduce cytochrome C, nitroblue tetrazolium, methemoglobin and free iron, using NADH, NADPH or ascorbate as cofactor. Intravenous administration of recombinant A1M in animal models eliminates or significantly reduces the manifestations of preeclampsia. A1M is a useful biomarker in clinical diagnostics for monitoring pre-eclampsia, hepatitis E, renal tubular dysfunction, and renal toxicity. A1M belongs to the lipocalin/cytosolic fatty-acid binding protein family which have a large beta-barrel ligand-binding cavity. Lipocalins are mainly low molecular weight extracellular proteins that bind principally small hydrophobic ligands, and form covalent or non-covalent complexes with soluble macromolecules, as well as membrane bound-receptors. They participate in processes such as ligand transport, modulation of cell growth and metabolism, regulation of immune response, smell reception, tissue development and animal behavior. Cytosolic fatty-acid binding proteins, also bind hydrophobic ligands in a non-covalent, reversible manner, and have been implicated in intracellular uptake, transport and storage of hydrophobic ligands, regulation of lipid metabolism and sequestration of excess toxic fatty acids, as well as in signaling, gene expression, inflammation, cell growth and proliferation, and cancer development. Pssm-ID: 381193 Cd Length: 163 Bit Score: 39.74 E-value: 2.04e-04
|
|||||||
Blast search parameters | ||||
|