dedicator of cytokinesis protein 3 [Rattus norvegicus]
SH3 domain-containing protein( domain architecture ID 10879023)
Src Homology 3 (SH3) domain-containing protein plays versatile and diverse roles in the cell, including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies, among others
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
DHR2_DOCK3 | cd11704 | Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3; Dock3, also ... |
1235-1626 | 0e+00 | ||||||
Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of cell adhesion (MOCA), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. Dock3 is a specific GEF for Rac. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock3, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. : Pssm-ID: 212577 Cd Length: 392 Bit Score: 806.54 E-value: 0e+00
|
||||||||||
DOCK_N | pfam16172 | DOCK N-terminus; This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) ... |
73-412 | 2.89e-128 | ||||||
DOCK N-terminus; This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) proteins, between the variant SH3 domain (pfam07653) and the C2 domain (pfam14429). : Pssm-ID: 465040 Cd Length: 317 Bit Score: 405.36 E-value: 2.89e-128
|
||||||||||
C2_Dock-B | cd08695 | C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins; Dock-B is one of 4 ... |
420-609 | 4.81e-127 | ||||||
C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins; Dock-B is one of 4 classes of Dock family proteins. The members here include: Dock3/MOCA (modifier of cell adhesion) and Dock4. Most of these members have been shown to be GEFs specific for Rac, although Dock4 has also been shown to interact indirectly with the Ras family GTPase Rap1, probably through Rap regulatory proteins. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-B members contain a SH3 domain upstream of the C2 domain and a proline-rich region downstream. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. : Pssm-ID: 176077 Cd Length: 189 Bit Score: 396.37 E-value: 4.81e-127
|
||||||||||
SH3_DOCK3_B | cd12048 | Src Homology 3 domain of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of ... |
10-65 | 7.25e-35 | ||||||
Src Homology 3 domain of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of cell adhesion (MOCA), and presenilin binding protein (PBP), is a class B DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; Dock3 is a specific GEFs for Rac. The SH3 domain of Dock3 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock3 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. : Pssm-ID: 212981 Cd Length: 56 Bit Score: 127.71 E-value: 7.25e-35
|
||||||||||
Atrophin-1 super family | cl38111 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
1751-2011 | 1.40e-06 | ||||||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. The actual alignment was detected with superfamily member pfam03154: Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 53.62 E-value: 1.40e-06
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
DHR2_DOCK3 | cd11704 | Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3; Dock3, also ... |
1235-1626 | 0e+00 | ||||||
Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of cell adhesion (MOCA), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. Dock3 is a specific GEF for Rac. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock3, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212577 Cd Length: 392 Bit Score: 806.54 E-value: 0e+00
|
||||||||||
DOCK_N | pfam16172 | DOCK N-terminus; This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) ... |
73-412 | 2.89e-128 | ||||||
DOCK N-terminus; This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) proteins, between the variant SH3 domain (pfam07653) and the C2 domain (pfam14429). Pssm-ID: 465040 Cd Length: 317 Bit Score: 405.36 E-value: 2.89e-128
|
||||||||||
C2_Dock-B | cd08695 | C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins; Dock-B is one of 4 ... |
420-609 | 4.81e-127 | ||||||
C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins; Dock-B is one of 4 classes of Dock family proteins. The members here include: Dock3/MOCA (modifier of cell adhesion) and Dock4. Most of these members have been shown to be GEFs specific for Rac, although Dock4 has also been shown to interact indirectly with the Ras family GTPase Rap1, probably through Rap regulatory proteins. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-B members contain a SH3 domain upstream of the C2 domain and a proline-rich region downstream. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176077 Cd Length: 189 Bit Score: 396.37 E-value: 4.81e-127
|
||||||||||
DOCK-C2 | pfam14429 | C2 domain in Dock180 and Zizimin proteins; The Dock180/Dock1 and Zizimin proteins are atypical ... |
417-608 | 1.61e-69 | ||||||
C2 domain in Dock180 and Zizimin proteins; The Dock180/Dock1 and Zizimin proteins are atypical GTP/GDP exchange factors for the small GTPases Rac and Cdc42 and are implicated cell-migration and phagocytosis. Across all Dock180 proteins, two regions are conserved: C-terminus termed CZH2 or DHR2 (or the Dedicator of cytokinesis) whereas CZH1/DHR1 contain a new family of the C2 domain. Pssm-ID: 464171 Cd Length: 185 Bit Score: 231.72 E-value: 1.61e-69
|
||||||||||
SH3_DOCK3_B | cd12048 | Src Homology 3 domain of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of ... |
10-65 | 7.25e-35 | ||||||
Src Homology 3 domain of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of cell adhesion (MOCA), and presenilin binding protein (PBP), is a class B DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; Dock3 is a specific GEFs for Rac. The SH3 domain of Dock3 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock3 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212981 Cd Length: 56 Bit Score: 127.71 E-value: 7.25e-35
|
||||||||||
DHR-2_Lobe_C | pfam20421 | DHR-2, Lobe C; DOCK (dedicator of cytokinesis) proteins are guanine nucleotide exchange ... |
1520-1628 | 3.80e-29 | ||||||
DHR-2, Lobe C; DOCK (dedicator of cytokinesis) proteins are guanine nucleotide exchange factors (GEFs) that activate some small GTPases, such as Rac or Cdc42, by exchanging bound GDP for free GTP to control cell migration, morphogenesis, and phagocytosis. These proteins share a DOCK-type C2 domain (also termed the DOCK-homology region (DHR)-1) at the N-terminal, and the DHR-2 domain (also termed the DOCKER domain) at the C-terminal. DHR-2 is the GEF catalytic domain organized into three lobes A, B and C, with the Rho-family binding site and catalytic centre generated entirely from lobes B and C. This entry represents Lobe C which form an antiparallel four alpha-helical bundle and contains a loop known as the nucleotide sensor characterized by a conserved valine residue essential for catalytic activity. Pssm-ID: 466570 [Multi-domain] Cd Length: 103 Bit Score: 113.07 E-value: 3.80e-29
|
||||||||||
SH3 | smart00326 | Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ... |
7-62 | 1.39e-07 | ||||||
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations. Pssm-ID: 214620 [Multi-domain] Cd Length: 56 Bit Score: 49.84 E-value: 1.39e-07
|
||||||||||
Atrophin-1 | pfam03154 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
1751-2011 | 1.40e-06 | ||||||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 53.62 E-value: 1.40e-06
|
||||||||||
SH3_2 | pfam07653 | Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in ... |
10-62 | 6.67e-06 | ||||||
Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. Pssm-ID: 429575 [Multi-domain] Cd Length: 54 Bit Score: 44.89 E-value: 6.67e-06
|
||||||||||
Name | Accession | Description | Interval | E-value | |||||||
DHR2_DOCK3 | cd11704 | Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3; Dock3, also ... |
1235-1626 | 0e+00 | |||||||
Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of cell adhesion (MOCA), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. Dock3 is a specific GEF for Rac. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock3, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212577 Cd Length: 392 Bit Score: 806.54 E-value: 0e+00
|
|||||||||||
DHR2_DOCK_B | cd11696 | Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis proteins; DOCK ... |
1235-1626 | 0e+00 | |||||||
Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis proteins; DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. Dock3 is a specific GEF for Rac and it regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. Dock4 activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. It plays a role in regulating dendritic growth and branching in hippocampal neurons, where it is highly expressed. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of class B DOCKs, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212569 Cd Length: 391 Bit Score: 752.74 E-value: 0e+00
|
|||||||||||
DHR2_DOCK4 | cd11705 | Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 4; Dock4 is an ... |
1235-1626 | 0e+00 | |||||||
Dock Homology Region 2, a GEF domain, of Class B Dedicator of Cytokinesis 4; Dock4 is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. It plays a role in regulating dendritic growth and branching in hippocampal neurons, where it is highly expressed. It may also regulate spine morphology and synapse formation. Dock4 activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class B includes Dock3 and 4. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock4, which contains the catalytic GEF activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212578 Cd Length: 391 Bit Score: 613.58 E-value: 0e+00
|
|||||||||||
DHR2_DOCK | cd11684 | Dock Homology Region 2, a GEF domain, of Dedicator of Cytokinesis proteins; DOCK proteins ... |
1235-1626 | 1.08e-156 | |||||||
Dock Homology Region 2, a GEF domain, of Dedicator of Cytokinesis proteins; DOCK proteins comprise a family of atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate the small GTPases Rac and Cdc42 by exchanging bound GDP for free GTP. They are also called the CZH (CED-5, Dock180, and MBC-zizimin homology) family, after the first family members identified. Dock180 was first isolated as a binding partner for the adaptor protein Crk. The Caenorhabditis elegans protein, Ced-5, is essential for cell migration and phagocytosis, while the Drosophila ortholog, Myoblast city (MBC), is necessary for myoblast fusion and dorsal closure. DOCKs are divided into four classes (A-D) based on sequence similarity and domain architecture: class A includes Dock1 (or Dock180), 2 and 5; class B includes Dock3 and 4; class C includes Dock6, 7, and 8; and class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1, and DHR-2 (also called CZH2 or Docker). This alignment model represents the DHR-2 domain of DOCK proteins, which contains the catalytic GEF activity for Rac and/or Cdc42. Pssm-ID: 212566 [Multi-domain] Cd Length: 392 Bit Score: 487.58 E-value: 1.08e-156
|
|||||||||||
DHR2_DOCK_A | cd11697 | Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis proteins; DOCK ... |
1235-1625 | 1.22e-153 | |||||||
Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis proteins; DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. Class A DOCKs are specific GEFs for Rac. Dock1 interacts with the scaffold protein Elmo and the resulting complex functions upstream of Rac in many biological events including phagocytosis of apoptotic cells, cell migration and invasion. Dock2 plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction. Dock5 functions upstream of Rac1 to regulate osteoclast function. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of class A DOCKs, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212570 Cd Length: 400 Bit Score: 479.52 E-value: 1.22e-153
|
|||||||||||
DHR2_DOCK2 | cd11706 | Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 2; Dock2 is a ... |
1216-1630 | 3.82e-137 | |||||||
Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 2; Dock2 is a hematopoietic cell-specific, class A DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. It plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock2, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs, like Dock2, are specific GEFs for Rac and they contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212579 Cd Length: 421 Bit Score: 434.80 E-value: 3.82e-137
|
|||||||||||
DOCK_N | pfam16172 | DOCK N-terminus; This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) ... |
73-412 | 2.89e-128 | |||||||
DOCK N-terminus; This family is found near to the N-terminus of dedicator of cytokinesis (DOCK) proteins, between the variant SH3 domain (pfam07653) and the C2 domain (pfam14429). Pssm-ID: 465040 Cd Length: 317 Bit Score: 405.36 E-value: 2.89e-128
|
|||||||||||
C2_Dock-B | cd08695 | C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins; Dock-B is one of 4 ... |
420-609 | 4.81e-127 | |||||||
C2 domains found in Dedicator Of CytoKinesis (Dock) class B proteins; Dock-B is one of 4 classes of Dock family proteins. The members here include: Dock3/MOCA (modifier of cell adhesion) and Dock4. Most of these members have been shown to be GEFs specific for Rac, although Dock4 has also been shown to interact indirectly with the Ras family GTPase Rap1, probably through Rap regulatory proteins. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-B members contain a SH3 domain upstream of the C2 domain and a proline-rich region downstream. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176077 Cd Length: 189 Bit Score: 396.37 E-value: 4.81e-127
|
|||||||||||
DHR2_DOCK1 | cd11707 | Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 1; Dock1, also ... |
1235-1630 | 1.82e-124 | |||||||
Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 1; Dock1, also called Dock180, is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. Dock1 interacts with the scaffold protein Elmo and the resulting complex functions upstream of Rac in many biological events including phagocytosis of apoptotic cells, cell migration and invasion. In the nervous system, it mediates attractive responses to netrin-1 and thus, plays a role in axon outgrowth and pathfinding. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock1, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs, like Dock1, are specific GEFs for Rac and they contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212580 Cd Length: 400 Bit Score: 398.26 E-value: 1.82e-124
|
|||||||||||
DHR2_DOCK5 | cd11708 | Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 5; Dock5 is an ... |
1235-1624 | 2.24e-119 | |||||||
Dock Homology Region 2, a GEF domain, of Class A Dedicator of Cytokinesis 5; Dock5 is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates small GTPases by exchanging bound GDP for free GTP. It functions upstream of Rac1 to regulate osteoclast function. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class A includes Dock1, 2 and 5. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock5, which contains the catalytic GEF activity for Rac and/or Cdc42. Class A DOCKs, like Dock5, are specific GEFs for Rac and they contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Pssm-ID: 212581 Cd Length: 400 Bit Score: 383.53 E-value: 2.24e-119
|
|||||||||||
DOCK-C2 | pfam14429 | C2 domain in Dock180 and Zizimin proteins; The Dock180/Dock1 and Zizimin proteins are atypical ... |
417-608 | 1.61e-69 | |||||||
C2 domain in Dock180 and Zizimin proteins; The Dock180/Dock1 and Zizimin proteins are atypical GTP/GDP exchange factors for the small GTPases Rac and Cdc42 and are implicated cell-migration and phagocytosis. Across all Dock180 proteins, two regions are conserved: C-terminus termed CZH2 or DHR2 (or the Dedicator of cytokinesis) whereas CZH1/DHR1 contain a new family of the C2 domain. Pssm-ID: 464171 Cd Length: 185 Bit Score: 231.72 E-value: 1.61e-69
|
|||||||||||
C2_Dock-A | cd08694 | C2 domains found in Dedicator Of CytoKinesis (Dock) class A proteins; Dock-A is one of 4 ... |
420-609 | 1.96e-68 | |||||||
C2 domains found in Dedicator Of CytoKinesis (Dock) class A proteins; Dock-A is one of 4 classes of Dock family proteins. The members here include: Dock180/Dock1, Dock2, and Dock5. Most of these members have been shown to be GEFs specific for Rac. Dock5 has not been well characterized to date, but most likely also is a GEF specific for Rac. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-A members contain a proline-rich region and a SH3 domain upstream of the C2 domain. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176076 Cd Length: 196 Bit Score: 229.21 E-value: 1.96e-68
|
|||||||||||
C2_DOCK180_related | cd08679 | C2 domains found in Dedicator Of CytoKinesis 1 (DOCK 180) and related proteins; Dock180 was ... |
421-609 | 6.86e-54 | |||||||
C2 domains found in Dedicator Of CytoKinesis 1 (DOCK 180) and related proteins; Dock180 was first identified as an 180kd proto-oncogene product c-Crk-interacting protein involved in actin cytoskeletal changes. It is now known that it has Rac-specific GEF activity, but lacks the conventional Dbl homology (DH) domain. There are 10 additional related proteins that can be divided into four classes based on sequence similarity and domain organization: Dock-A which includes Dock180/Dock1, Dock2, and Dock5; Dock-B which includes Dock3/MOCA (modifier of cell adhesion) and Dock4; Dock-C which includes Dock6/Zir1, Dock7/Zir2, and Dock8/Zir3; and Dock-D, which includes Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2/ACG (activated Cdc42-associated GEF). Most of members of classes Dock-A and Dock-B are the GEFs specific for Rac. Those of Dock-D are Cdc42-specific GEFs while those of Dock-C are the GEFs for both. All Dock180-related proteins have two common homology domains: the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker). DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176061 Cd Length: 178 Bit Score: 186.77 E-value: 6.86e-54
|
|||||||||||
SH3_DOCK3_B | cd12048 | Src Homology 3 domain of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of ... |
10-65 | 7.25e-35 | |||||||
Src Homology 3 domain of Class B Dedicator of Cytokinesis 3; Dock3, also called modifier of cell adhesion (MOCA), and presenilin binding protein (PBP), is a class B DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It regulates N-cadherin dependent cell-cell adhesion, cell polarity, and neuronal morphology. It promotes axonal growth by stimulating actin polymerization and microtubule assembly. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; Dock3 is a specific GEFs for Rac. The SH3 domain of Dock3 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock3 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212981 Cd Length: 56 Bit Score: 127.71 E-value: 7.25e-35
|
|||||||||||
DHR-2_Lobe_C | pfam20421 | DHR-2, Lobe C; DOCK (dedicator of cytokinesis) proteins are guanine nucleotide exchange ... |
1520-1628 | 3.80e-29 | |||||||
DHR-2, Lobe C; DOCK (dedicator of cytokinesis) proteins are guanine nucleotide exchange factors (GEFs) that activate some small GTPases, such as Rac or Cdc42, by exchanging bound GDP for free GTP to control cell migration, morphogenesis, and phagocytosis. These proteins share a DOCK-type C2 domain (also termed the DOCK-homology region (DHR)-1) at the N-terminal, and the DHR-2 domain (also termed the DOCKER domain) at the C-terminal. DHR-2 is the GEF catalytic domain organized into three lobes A, B and C, with the Rho-family binding site and catalytic centre generated entirely from lobes B and C. This entry represents Lobe C which form an antiparallel four alpha-helical bundle and contains a loop known as the nucleotide sensor characterized by a conserved valine residue essential for catalytic activity. Pssm-ID: 466570 [Multi-domain] Cd Length: 103 Bit Score: 113.07 E-value: 3.80e-29
|
|||||||||||
SH3_DOCK_AB | cd11872 | Src Homology 3 domain of Class A and B Dedicator of Cytokinesis proteins; DOCK proteins are ... |
10-65 | 6.17e-26 | |||||||
Src Homology 3 domain of Class A and B Dedicator of Cytokinesis proteins; DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. They are divided into four classes (A-D) based on sequence similarity and domain architecture: class A includes Dock1, 2 and 5; class B includes Dock3 and 4; class C includes Dock6, 7, and 8; and class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. This subfamily includes only Class A and B DOCKs, which also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. Class A/B DOCKs are mostly specific GEFs for Rac, except Dock4 which activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. The SH3 domain of class A/B DOCKs have been shown to bind Elmo, a scaffold protein that promotes GEF activity of DOCKs by releasing DHR-2 autoinhibition by the intramolecular SH3 domain. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212805 [Multi-domain] Cd Length: 56 Bit Score: 101.89 E-value: 6.17e-26
|
|||||||||||
DHR2_DOCK9 | cd11698 | Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 9; Dock9, also ... |
1321-1626 | 2.42e-25 | |||||||
Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 9; Dock9, also called Zizimin1, is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPase Cdc42 by exchanging bound GDP for free GTP. It plays important roles in spine formation and dendritic growth. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock9, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. Pssm-ID: 212571 Cd Length: 415 Bit Score: 111.27 E-value: 2.42e-25
|
|||||||||||
SH3_DOCK4_B | cd12049 | Src Homology 3 domain of Class B Dedicator of Cytokinesis 4; Dock4 is a class B DOCK and is an ... |
10-65 | 2.44e-25 | |||||||
Src Homology 3 domain of Class B Dedicator of Cytokinesis 4; Dock4 is a class B DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It plays a role in regulating dendritic growth and branching in hippocampal neurons, where it is highly expressed. It may also regulate spine morphology and synapse formation. Dock4 activates the Ras family GTPase Rap1, probably indirectly through interaction with Rap regulatory proteins. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class B DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus. The SH3 domain of Dock4 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock4 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212982 Cd Length: 56 Bit Score: 100.33 E-value: 2.44e-25
|
|||||||||||
DHR2_DOCK_D | cd11694 | Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis proteins; DOCK ... |
1244-1626 | 5.09e-24 | |||||||
Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis proteins; DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class D, also called the Zizimin subfamily, includes Dock9, 10 and 11. Class D Docks are specific GEFs for Cdc42. Dock9 plays important roles in spine formation and dendritic growth. Dock10 and Dock11 are preferentially expressed in lymphocytes. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of class D DOCKs, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. Pssm-ID: 212567 Cd Length: 376 Bit Score: 106.27 E-value: 5.09e-24
|
|||||||||||
DHR2_DOCK_C | cd11695 | Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis proteins; DOCK ... |
1292-1626 | 1.32e-23 | |||||||
Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis proteins; DOCK proteins are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. As GEFs, they activate small GTPases by exchanging bound GDP for free GTP. They are divided into four classes (A-D) based on sequence similarity and domain architecture; class C, also called the Zizimin-related (Zir) subfamily, includes Dock6, 7 and 8. Class C DOCKs have been shown to have GEF activity for both Rac and Cdc42. Dock6 regulates neurite outgrowth. Dock7 plays a critical roles in the early stages of axon formation, neuronal polarity, and myelination. Dock8 regulates T and B cell numbers and functions, and plays essential roles in humoral immune responses and the proper formation of B cell immunological synapses. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Class C Docks, which contains the catalytic GEF activity for Rac and Cdc42. Pssm-ID: 212568 Cd Length: 368 Bit Score: 105.07 E-value: 1.32e-23
|
|||||||||||
DHR2_DOCK11 | cd11700 | Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 11; Dock11, also ... |
1321-1626 | 7.79e-22 | |||||||
Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 11; Dock11, also called Zizimin2 or activated Cdc42-associated GEF (ACG), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPase Cdc42 by exchanging bound GDP for free GTP. Dock11 is predominantly expressed in lymphocytes and is found in high levels in germinal center B lymphocytes after T cell dependent antigen immunization. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock11, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. Pssm-ID: 212573 Cd Length: 413 Bit Score: 100.46 E-value: 7.79e-22
|
|||||||||||
DHR2_DOCK8 | cd11701 | Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 8; Dock8, also ... |
1292-1626 | 1.03e-21 | |||||||
Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 8; Dock8, also called Zizimin-related 3 (Zir3), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPases Rac1 and Cdc42 by exchanging bound GDP for free GTP. Dock8 is highly expressed in the immune system and it regulates T and B cell numbers and functions. It plays essential roles in humoral immune responses and the proper formation of B cell immunological synapses. Dock8 deficiency is a primary immune deficiency that results in extreme susceptibility to cutaneous viral infections, elevated IgE levels, and eosinophilia. It was originally described as an autosomal recessive form of hyper IgE syndrome (AR-HIES). DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class C includes Dock6, 7 and 8. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock8, which contains the catalytic GEF activity for Rac and/or Cdc42. Pssm-ID: 212574 Cd Length: 422 Bit Score: 100.50 E-value: 1.03e-21
|
|||||||||||
DHR-2_Lobe_B | pfam20422 | DHR-2, Lobe B; DOCK (dedicator of cytokinesis) proteins are guanine nucleotide exchange ... |
1404-1486 | 1.28e-21 | |||||||
DHR-2, Lobe B; DOCK (dedicator of cytokinesis) proteins are guanine nucleotide exchange factors (GEFs) that activate some small GTPases, such as Rac or Cdc42, by exchanging bound GDP for free GTP to control cell migration, morphogenesis, and phagocytosis. These proteins share a DOCK-type C2 domain (also termed the DOCK-homology region (DHR)-1) at the N-terminal, and the DHR-2 domain (also termed the DOCKER domain) at the C-terminal. DHR-2 is the GEF catalytic domain organized into three lobes A, B and C, with the Rho-family binding site and catalytic centre generated entirely from lobes B and C. This entry represents Lobe B which adopts an unusual architecture of two antiparallel beta sheets disposed in a loosely packed orthogonal arrangement. This lobe changes its position relative to lobe C and the bound GTPase, which suggests that lobe B distinguishes between the switch 1 conformations of Rac1 and Cdc42. Pssm-ID: 466571 [Multi-domain] Cd Length: 77 Bit Score: 90.36 E-value: 1.28e-21
|
|||||||||||
DHR2_DOCK10 | cd11699 | Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 10; Dock10, also ... |
1293-1619 | 1.02e-18 | |||||||
Dock Homology Region 2, a GEF domain, of Class D Dedicator of Cytokinesis 10; Dock10, also called Zizimin3, is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPase Cdc42 by exchanging bound GDP for free GTP. Dock10 is preferentially expressed in lymphocytes and may play a role in interleukin-4 induced activation of B cells. It may also play a role in the invasion of tumor cells. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class D includes Dock9, 10 and 11. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock10, which contains the catalytic GEF activity for Cdc42. Class D DOCKs also contain a Pleckstrin homology (PH) domain at the N-terminus. Pssm-ID: 212572 Cd Length: 446 Bit Score: 91.26 E-value: 1.02e-18
|
|||||||||||
DHR2_DOCK6 | cd11702 | Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 6; Dock6, also ... |
1292-1626 | 1.23e-18 | |||||||
Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 6; Dock6, also called Zizimin-related 1 (Zir1), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPases Rac and Cdc42 by exchanging bound GDP for free GTP. It is widely expressed and shows highest expression in the dorsal root ganglion and the brain. It regulates neurite outgrowth. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class C includes Dock6, 7 and 8. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock6, which contains the catalytic GEF activity for Rac and/or Cdc42. Pssm-ID: 212575 Cd Length: 423 Bit Score: 90.84 E-value: 1.23e-18
|
|||||||||||
DHR2_DOCK7 | cd11703 | Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 7; Dock7, also ... |
1321-1626 | 1.75e-14 | |||||||
Dock Homology Region 2, a GEF domain, of Class C Dedicator of Cytokinesis 7; Dock7, also called Zizimin-related 2 (Zir2), is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. As a GEF, it activates the small GTPases Rac1 and Cdc42 by exchanging bound GDP for free GTP. It plays a critical role in the initial specification of axon formation in hippocampal neurons. It affects neuronal polarity by regulating microtubule dynamics. Dock7 also plays a role in controlling myelination by Schwann cells. It may also play important roles in the function and distribution of dermal and follicular melanocytes. DOCK proteins are divided into four classes (A-D) based on sequence similarity and domain architecture; class C includes Dock6, 7 and 8. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate. This alignment model represents the DHR-2 domain of Dock7, which contains the catalytic GEF activity for Rac and/or Cdc42. Pssm-ID: 212576 Cd Length: 473 Bit Score: 78.58 E-value: 1.75e-14
|
|||||||||||
SH3_DOCK1_5_A | cd12051 | Src Homology 3 domain of Class A Dedicator of Cytokinesis proteins 1 and 5; Dock1, also called ... |
10-65 | 2.25e-14 | |||||||
Src Homology 3 domain of Class A Dedicator of Cytokinesis proteins 1 and 5; Dock1, also called Dock180, and Dock5 are class A DOCKs and are atypical guanine nucleotide exchange factors (GEFs) that lack the conventional Dbl homology (DH) domain. Dock1 interacts with the scaffold protein Elmo and the resulting complex functions upstream of Rac in many biological events including phagocytosis of apoptotic cells, cell migration and invasion. Dock5 functions upstream of Rac1 to regulate osteoclast function. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class A DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; they are specific GEFs for Rac. The SH3 domain of Dock1 binds to DHR-2 in an autoinhibitory manner; binding of Elmo to the SH3 domain of Dock1 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212984 [Multi-domain] Cd Length: 56 Bit Score: 69.08 E-value: 2.25e-14
|
|||||||||||
SH3_DOCK2_A | cd12050 | Src Homology 3 domain of Class A Dedicator of Cytokinesis protein 2; Dock2 is a hematopoietic ... |
10-65 | 9.56e-14 | |||||||
Src Homology 3 domain of Class A Dedicator of Cytokinesis protein 2; Dock2 is a hematopoietic cell-specific, class A DOCK and is an atypical guanine nucleotide exchange factor (GEF) that lacks the conventional Dbl homology (DH) domain. It plays an important role in lymphocyte migration and activation, T-cell differentiation, neutrophil chemotaxis, and type I interferon induction. All DOCKs contain two homology domains: the DHR-1 (Dock homology region-1), also called CZH1 (CED-5, Dock180, and MBC-zizimin homology 1), and DHR-2 (also called CZH2 or Docker). The DHR-1 domain binds phosphatidylinositol-3,4,5-triphosphate while DHR-2 contains the catalytic activity for Rac and/or Cdc42. Class A DOCKs also contain an SH3 domain at the N-terminal region and a PxxP motif at the C-terminus; they are specific GEFs for Rac. The SH3 domain of Dock2 binds to DHR-2 in an autoinhibitory manner; binding of the scaffold protein Elmo to the SH3 domain of Dock2 exposes the DHR-2 domain and promotes GEF activity. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212983 Cd Length: 56 Bit Score: 67.56 E-value: 9.56e-14
|
|||||||||||
DHR-2_Lobe_A | pfam06920 | DHR-2, Lobe A; This entry represents a conserved region within a number of eukaryotic ... |
1222-1346 | 2.73e-13 | |||||||
DHR-2, Lobe A; This entry represents a conserved region within a number of eukaryotic dedicator of cytokinesis proteins (DOCK), which are guanine nucleotide exchange factors (GEFs), that activate some small GTPases by exchanging bound GDP for free GTP such as Rac. These proteins have a DOCK-homology region 1 (DHR-1, also known as DOCK-type C2 domain) at the N-terminus and a DHR-2 (also known as DOCKER domain) at the C-terminal. The DHR-2 is a GEF catalytic domain organized into three lobes, A, B and C, with the Rho-family binding site and catalytic centre generated entirely from lobes B and C. This entry represents Lobe A, formed from an antiparallel array of alpha helices that adopts a tetratricopeptide repeat-like fold, which through extensive contacts with lobe B, stabilizes DHR-2 domain. Pssm-ID: 462040 [Multi-domain] Cd Length: 154 Bit Score: 69.24 E-value: 2.73e-13
|
|||||||||||
C2_Dock-D | cd08697 | C2 domains found in Dedicator Of CytoKinesis (Dock) class C proteins; Dock-D is one of 4 ... |
458-609 | 1.46e-09 | |||||||
C2 domains found in Dedicator Of CytoKinesis (Dock) class C proteins; Dock-D is one of 4 classes of Dock family proteins. The members here include: Dock9/Zizimin1, Dock10/Zizimin3, and Dock11/Zizimin2/ACG (activated Cdc42-associated GEF). Dock-D are Cdc42-specific GEFs. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-D members contain a functionally uncharacterized domain and a PH domain upstream of the C2 domain. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The PH domain broadly binds to phospholipids and is thought to be involved in targeting the plasma membrane. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176079 Cd Length: 185 Bit Score: 59.26 E-value: 1.46e-09
|
|||||||||||
SH3 | smart00326 | Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences ... |
7-62 | 1.39e-07 | |||||||
Src homology 3 domains; Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH3 domains in 2 different binding orientations. Pssm-ID: 214620 [Multi-domain] Cd Length: 56 Bit Score: 49.84 E-value: 1.39e-07
|
|||||||||||
Atrophin-1 | pfam03154 | Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ... |
1751-2011 | 1.40e-06 | |||||||
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity. Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 53.62 E-value: 1.40e-06
|
|||||||||||
SH3 | cd00174 | Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction ... |
10-61 | 2.21e-06 | |||||||
Src Homology 3 domain superfamily; Src Homology 3 (SH3) domains are protein interaction domains that bind proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. Thus, they are referred to as proline-recognition domains (PRDs). SH3 domains are less selective and show more diverse specificity compared to other PRDs. They have been shown to bind peptide sequences that lack the PxxP motif; examples include the PxxDY motif of Eps8 and the RKxxYxxY sequence in SKAP55. SH3 domain containing proteins play versatile and diverse roles in the cell, including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies, among others. Many members of this superfamily are adaptor proteins that associate with a number of protein partners, facilitating complex formation and signal transduction. Pssm-ID: 212690 [Multi-domain] Cd Length: 51 Bit Score: 46.30 E-value: 2.21e-06
|
|||||||||||
SH3_2 | pfam07653 | Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in ... |
10-62 | 6.67e-06 | |||||||
Variant SH3 domain; SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. First described in the Src cytoplasmic tyrosine kinase. The structure is a partly opened beta barrel. Pssm-ID: 429575 [Multi-domain] Cd Length: 54 Bit Score: 44.89 E-value: 6.67e-06
|
|||||||||||
SH3_Eve1_2 | cd11815 | Second Src homology 3 domain of ADAM-binding protein Eve-1; Eve-1, also called SH3 ... |
10-62 | 1.27e-05 | |||||||
Second Src homology 3 domain of ADAM-binding protein Eve-1; Eve-1, also called SH3 domain-containing protein 19 (SH3D19) or EEN-binding protein (EBP), exists in multiple alternatively spliced isoforms. The longest isoform contains five SH3 domain in the C-terminal region and seven proline-rich motifs in the N-terminal region. It is abundantly expressed in skeletal muscle and heart, and may be involved in regulating the activity of ADAMs (A disintegrin and metalloproteases). Eve-1 interacts with EEN, an endophilin involved in endocytosis and may be the target of the MLL-EEN fusion protein that is implicated in leukemogenesis. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212749 [Multi-domain] Cd Length: 52 Bit Score: 44.09 E-value: 1.27e-05
|
|||||||||||
SH3_SH3RF2_3 | cd11784 | Third Src Homology 3 domain of SH3 domain containing ring finger 2; SH3RF2 is also called ... |
12-62 | 2.11e-05 | |||||||
Third Src Homology 3 domain of SH3 domain containing ring finger 2; SH3RF2 is also called POSHER (POSH-eliminating RING protein) or HEPP1 (heart protein phosphatase 1-binding protein). It acts as an anti-apoptotic regulator of the JNK pathway by binding to and promoting the degradation of SH3RF1 (or POSH), a scaffold protein that is required for pro-apoptotic JNK activation. It may also play a role in cardiac functions together with protein phosphatase 1. SH3RF2 contains an N-terminal RING finger domain and three SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF2. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212718 Cd Length: 55 Bit Score: 43.61 E-value: 2.11e-05
|
|||||||||||
C2_Dock-C | cd08696 | C2 domains found in Dedicator Of CytoKinesis (Dock) class C proteins; Dock-C is one of 4 ... |
421-534 | 3.62e-05 | |||||||
C2 domains found in Dedicator Of CytoKinesis (Dock) class C proteins; Dock-C is one of 4 classes of Dock family proteins. The members here include: Dock6/Zir1, Dock7/Zir2, and Dock8/Zir3. Dock-C members are GEFs for both Rac and Cdc42. In addition to the C2 domain (AKA Dock homology region (DHR)-1, CED-5, Dock180, MBC-zizimin homology (CZH) 1) and the DHR-2 (AKA CZH2, or Docker), which all Dock180-related proteins have, Dock-C members contain a functionally uncharacterized domain upstream of the C2 domain. DHR-2 has the catalytic activity for Rac and/or Cdc42, but is structurally unrelated to the DH domain. The C2/DHR-1 domains of Dock180 and Dock4 have been shown to bind phosphatidylinositol-3, 4, 5-triphosphate (PtdIns(3,4,5)P3). The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176078 Cd Length: 179 Bit Score: 46.58 E-value: 3.62e-05
|
|||||||||||
SH3_p47phox_like | cd11856 | Src homology 3 domains of the p47phox subunit of NADPH oxidase and similar domains; This ... |
12-62 | 6.48e-05 | |||||||
Src homology 3 domains of the p47phox subunit of NADPH oxidase and similar domains; This family is composed of the tandem SH3 domains of p47phox subunit of NADPH oxidase and Nox Organizing protein 1 (NoxO1), the four SH3 domains of Tks4 (Tyr kinase substrate with four SH3 domains), the five SH3 domains of Tks5, the SH3 domain of obscurin, Myosin-I, and similar domains. Most members of this group also contain Phox homology (PX) domains, except for obscurin and Myosin-I. p47phox and NoxO1 are regulators of the phagocytic NADPH oxidase complex (also called Nox2 or gp91phox) and nonphagocytic NADPH oxidase Nox1, respectively. They play roles in the activation of their respective NADPH oxidase, which catalyzes the transfer of electrons from NADPH to molecular oxygen to form superoxide. Tks proteins are Src substrates and scaffolding proteins that play important roles in the formation of podosomes and invadopodia, the dynamic actin-rich structures that are related to cell migration and cancer cell invasion. Obscurin is a giant muscle protein that plays important roles in the organization and assembly of the myofibril and the sarcoplasmic reticulum. Type I myosins (Myosin-I) are actin-dependent motors in endocytic actin structures and actin patches. They play roles in membrane traffic in endocytic and secretory pathways, cell motility, and mechanosensing. Myosin-I contains an N-terminal actin-activated ATPase, a phospholipid-binding TH1 (tail homology 1) domain, and a C-terminal extension which includes an F-actin-binding TH2 domain, an SH3 domain, and an acidic peptide that participates in activating the Arp2/3complex. The SH3 domain of myosin-I is required for myosin-I-induced actin polymerization. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212790 [Multi-domain] Cd Length: 53 Bit Score: 42.24 E-value: 6.48e-05
|
|||||||||||
SH3_CD2AP-like_2 | cd11874 | Second Src Homology 3 domain (SH3B) of CD2-associated protein and similar proteins; This ... |
25-62 | 6.82e-05 | |||||||
Second Src Homology 3 domain (SH3B) of CD2-associated protein and similar proteins; This subfamily is composed of the second SH3 domain (SH3B) of CD2AP, CIN85 (Cbl-interacting protein of 85 kDa), and similar domains. CD2AP and CIN85 are adaptor proteins that bind to protein partners and assemble complexes that have been implicated in T cell activation, kidney function, and apoptosis of neuronal cells. They also associate with endocytic proteins, actin cytoskeleton components, and other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. CD2AP and the main isoform of CIN85 contain three SH3 domains, a proline-rich region, and a C-terminal coiled-coil domain. All of these domains enable CD2AP and CIN85 to bind various protein partners and assemble complexes that have been implicated in many different functions. SH3B of both proteins have been shown to bind to Cbl. In the case of CD2AP, its SH3B binds to Cbl at a site distinct from the c-Cbl/SH3A binding site. The CIN85 SH3B also binds ubiquitin. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212807 [Multi-domain] Cd Length: 53 Bit Score: 42.32 E-value: 6.82e-05
|
|||||||||||
SH3_SH3RF3_3 | cd11925 | Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ... |
25-62 | 9.65e-04 | |||||||
Third Src Homology 3 domain of SH3 domain containing ring finger 3, an E3 ubiquitin-protein ligase; SH3RF3 is also called POSH2 (Plenty of SH3s 2) or SH3MD4 (SH3 multiple domains protein 4). It is a scaffold protein with E3 ubiquitin-protein ligase activity. It was identified in the screen for interacting partners of p21-activated kinase 2 (PAK2). It may play a role in regulating JNK mediated apoptosis in certain conditions. It also interacts with GTP-loaded Rac1. SH3RF3 is highly homologous to SH3RF1; it also contains an N-terminal RING finger domain and four SH3 domains. This model represents the third SH3 domain, located in the middle, of SH3RF3. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212858 Cd Length: 57 Bit Score: 39.21 E-value: 9.65e-04
|
|||||||||||
SH3_Ysc84p_like | cd11842 | Src homology 3 domain of Ysc84p and similar fungal proteins; This family is composed of the ... |
10-64 | 1.33e-03 | |||||||
Src homology 3 domain of Ysc84p and similar fungal proteins; This family is composed of the Saccharomyces cerevisiae proteins, Ysc84p (also called LAS17-binding protein 4, Lsb4p) and Lsb3p, and similar fungal proteins. They contain an N-terminal SYLF domain (also called DUF500) and a C-terminal SH3 domain. Ysc84p localizes to actin patches and plays an important in actin polymerization during endocytosis. The N-terminal domain of both Ysc84p and Lsb3p can bind and bundle actin filaments. A study of the yeast SH3 domain interactome predicts that the SH3 domains of Lsb3p and Lsb4p may function as molecular hubs for the assembly of endocytic complexes. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212776 [Multi-domain] Cd Length: 55 Bit Score: 38.56 E-value: 1.33e-03
|
|||||||||||
SH3_Cortactin_like | cd11819 | Src homology 3 domain of Cortactin and related proteins; This subfamily includes cortactin, ... |
30-64 | 4.70e-03 | |||||||
Src homology 3 domain of Cortactin and related proteins; This subfamily includes cortactin, Abp1 (actin-binding protein 1), hematopoietic lineage cell-specific protein 1 (HS1), and similar proteins. These proteins are involved in regulating actin dynamics through direct or indirect interaction with the Arp2/3 complex, which is required to initiate actin polymerization. They all contain at least one C-terminal SH3 domain. Cortactin and HS1 bind Arp2/3 and actin through an N-terminal region that contains an acidic domain and several copies of a repeat domain found in cortactin and HS1. Abp1 binds actin via an N-terminal actin-depolymerizing factor (ADF) homology domain. Yeast Abp1 binds Arp2/3 directly through two acidic domains. Mammalian Abp1 does not directly interact with Arp2/3; instead, it regulates actin dynamics indirectly by interacting with dynamin and WASP family proteins. The C-terminal region of these proteins acts as an adaptor or scaffold that can connect membrane trafficking and signaling proteins that bind the SH3 domain within the actin network. SH3 domains are protein interaction domains that bind to proline-rich ligands with moderate affinity and selectivity, preferentially to PxxP motifs. They play versatile and diverse roles in the cell including the regulation of enzymes, changing the subcellular localization of signaling pathway components, and mediating the formation of multiprotein complex assemblies. Pssm-ID: 212753 [Multi-domain] Cd Length: 54 Bit Score: 36.91 E-value: 4.70e-03
|
|||||||||||
Blast search parameters | ||||
|