rho GTPase-activating protein 22 [Rattus norvegicus]
Rho GTPase-activating protein( domain architecture ID 107455)
Rho GTPase-activating protein for Rho/Rac/Cdc42-like small GTPases that act as molecular switches, active in their GTP-bound form but inactive when bound to GDP; contains a Pleckstrin homology (PH) domain
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
RhoGAP super family | cl02570 | RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ... |
61-190 | 2.99e-77 | ||||
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins. The actual alignment was detected with superfamily member cd04390: Pssm-ID: 470621 [Multi-domain] Cd Length: 199 Bit Score: 241.96 E-value: 2.99e-77
|
||||||||
PH-like super family | cl17171 | Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ... |
18-61 | 2.40e-23 | ||||
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins. The actual alignment was detected with superfamily member cd13378: Pssm-ID: 473070 Cd Length: 116 Bit Score: 95.01 E-value: 2.40e-23
|
||||||||
SMC_prok_B super family | cl37069 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
433-523 | 9.88e-05 | ||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] The actual alignment was detected with superfamily member TIGR02168: Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 45.43 E-value: 9.88e-05
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
RhoGAP_ARHGAP22_24_25 | cd04390 | RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
61-190 | 2.99e-77 | ||||
RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239855 [Multi-domain] Cd Length: 199 Bit Score: 241.96 E-value: 2.99e-77
|
||||||||
PH_RhoGAP2 | cd13378 | Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ... |
18-61 | 2.40e-23 | ||||
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241529 Cd Length: 116 Bit Score: 95.01 E-value: 2.40e-23
|
||||||||
RhoGAP | smart00324 | GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ... |
83-186 | 2.27e-20 | ||||
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers. Pssm-ID: 214618 Cd Length: 174 Bit Score: 88.48 E-value: 2.27e-20
|
||||||||
RhoGAP | pfam00620 | RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. |
83-162 | 3.66e-20 | ||||
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. Pssm-ID: 459875 Cd Length: 148 Bit Score: 86.83 E-value: 3.66e-20
|
||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
433-523 | 9.88e-05 | ||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 45.43 E-value: 9.88e-05
|
||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
433-537 | 1.60e-04 | ||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 44.37 E-value: 1.60e-04
|
||||||||
DUF4670 | pfam15709 | Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins ... |
394-522 | 8.78e-04 | ||||
Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. Pssm-ID: 464815 [Multi-domain] Cd Length: 522 Bit Score: 41.86 E-value: 8.78e-04
|
||||||||
PRK09039 | PRK09039 | peptidoglycan -binding protein; |
441-538 | 1.65e-03 | ||||
peptidoglycan -binding protein; Pssm-ID: 181619 [Multi-domain] Cd Length: 343 Bit Score: 40.72 E-value: 1.65e-03
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
29-54 | 2.72e-03 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 37.54 E-value: 2.72e-03
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
RhoGAP_ARHGAP22_24_25 | cd04390 | RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
61-190 | 2.99e-77 | ||||
RhoGAP_ARHGAP22_24_25: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP22, 24 and 25-like proteins; longer isoforms of these proteins contain an additional N-terminal pleckstrin homology (PH) domain. ARHGAP25 (KIA0053) has been identified as a GAP for Rac1 and Cdc42. Short isoforms (without the PH domain) of ARHGAP24, called RC-GAP72 and p73RhoGAP, and of ARHGAP22, called p68RacGAP, has been shown to be involved in angiogenesis and endothelial cell capillary formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239855 [Multi-domain] Cd Length: 199 Bit Score: 241.96 E-value: 2.99e-77
|
||||||||
PH_RhoGAP2 | cd13378 | Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 ... |
18-61 | 2.40e-23 | ||||
Rho GTPase activating protein 2 Pleckstrin homology (PH) domain; RhoGAP2 (also called RhoGap22 or ArhGap22) are involved in cell polarity, cell morphology and cytoskeletal organization. They activate a GTPase belonging to the RAS superfamily of small GTP-binding proteins. The encoded protein is insulin-responsive, is dependent on the kinase Akt, and requires the Akt-dependent 14-3-3 binding protein which binds sequentially to two serine residues resulting in regulation of cell motility. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241529 Cd Length: 116 Bit Score: 95.01 E-value: 2.40e-23
|
||||||||
RhoGAP | cd00159 | RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like ... |
83-182 | 2.65e-21 | ||||
RhoGAP: GTPase-activator protein (GAP) for Rho-like GTPases; GAPs towards Rho/Rac/Cdc42-like small GTPases. Small GTPases (G proteins) cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when bound to GDP. The Rho family of small G proteins, which includes Cdc42Hs, activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. The RhoGAPs are one of the major classes of regulators of Rho G proteins. Pssm-ID: 238090 [Multi-domain] Cd Length: 169 Bit Score: 90.82 E-value: 2.65e-21
|
||||||||
RhoGAP | smart00324 | GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac ... |
83-186 | 2.27e-20 | ||||
GTPase-activator protein for Rho-like GTPases; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. etter domain limits and outliers. Pssm-ID: 214618 Cd Length: 174 Bit Score: 88.48 E-value: 2.27e-20
|
||||||||
RhoGAP | pfam00620 | RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. |
83-162 | 3.66e-20 | ||||
RhoGAP domain; GTPase activator proteins towards Rho/Rac/Cdc42-like small GTPases. Pssm-ID: 459875 Cd Length: 148 Bit Score: 86.83 E-value: 3.66e-20
|
||||||||
PH_RhoGap24 | cd13379 | Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ... |
20-61 | 2.67e-15 | ||||
Rho GTPase activating protein 24 Pleckstrin homology (PH) domain; RhoGap24 (also called ARHGAP24, p73RhoGAp, and Filamin-A-associated RhoGAP) like other RhoGAPs are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 241530 Cd Length: 114 Bit Score: 71.93 E-value: 2.67e-15
|
||||||||
PH_RhoGap25-like | cd13263 | Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; ... |
20-61 | 1.79e-14 | ||||
Rho GTPase activating protein 25 and related proteins Pleckstrin homology (PH) domain; RhoGAP25 (also called ArhGap25) like other RhoGaps are involved in cell polarity, cell morphology and cytoskeletal organization. They act as GTPase activators for the Rac-type GTPases by converting them to an inactive GDP-bound state and control actin remodeling by inactivating Rac downstream of Rho leading to suppress leading edge protrusion and promotes cell retraction to achieve cellular polarity and are able to suppress RAC1 and CDC42 activity in vitro. Overexpression of these proteins induces cell rounding with partial or complete disruption of actin stress fibers and formation of membrane ruffles, lamellipodia, and filopodia. This hierarchy contains RhoGAP22, RhoGAP24, and RhoGAP25. Members here contain an N-terminal PH domain followed by a RhoGAP domain and either a BAR or TATA Binding Protein (TBP) Associated Factor 4 (TAF4) domain. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270083 Cd Length: 114 Bit Score: 69.72 E-value: 1.79e-14
|
||||||||
RhoGAP_nadrin | cd04386 | RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
62-190 | 4.61e-13 | ||||
RhoGAP_nadrin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Nadrin-like proteins. Nadrin, also named Rich-1, has been shown to be involved in the regulation of Ca2+-dependent exocytosis in neurons and recently has been implicated in tight junction maintenance in mammalian epithelium. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239851 Cd Length: 203 Bit Score: 68.25 E-value: 4.61e-13
|
||||||||
RhoGAP-p50rhoGAP | cd04404 | RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
63-161 | 6.62e-13 | ||||
RhoGAP-p50rhoGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p50RhoGAP-like proteins; p50RhoGAP, also known as RhoGAP-1, contains a C-terminal RhoGAP domain and an N-terminal Sec14 domain which binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). It is ubiquitously expressed and preferentially active on Cdc42. This subgroup also contains closely related ARHGAP8. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239869 [Multi-domain] Cd Length: 195 Bit Score: 67.36 E-value: 6.62e-13
|
||||||||
RhoGAP_FAM13A1a | cd04393 | RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
83-183 | 8.99e-10 | ||||
RhoGAP_FAM13A1a: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of FAM13A1, isoform a-like proteins. The function of FAM13A1a is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by up several orders of magnitude. Pssm-ID: 239858 [Multi-domain] Cd Length: 189 Bit Score: 58.24 E-value: 8.99e-10
|
||||||||
RhoGAP_MgcRacGAP | cd04382 | RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
77-182 | 3.21e-09 | ||||
RhoGAP_MgcRacGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in MgcRacGAP proteins. MgcRacGAP plays an important dual role in cytokinesis: i) it is part of centralspindlin-complex, together with the mitotic kinesin MKLP1, which is critical for the structure of the central spindle by promoting microtuble bundling. ii) after phosphorylation by aurora B MgcRacGAP becomes an effective regulator of RhoA and plays an important role in the assembly of the contractile ring and the initiation of cytokinesis. MgcRacGAP-like proteins contain a N-terminal C1-like domain, and a C-terminal RhoGAP domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239847 Cd Length: 193 Bit Score: 56.53 E-value: 3.21e-09
|
||||||||
RhoGAP_ARHGAP21 | cd04395 | RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
63-169 | 3.75e-09 | ||||
RhoGAP_ARHGAP21: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP21-like proteins. ArhGAP21 is a multi-domain protein, containing RhoGAP, PH and PDZ domains, and is believed to play a role in the organization of the cell-cell junction complex. It has been shown to function as a GAP of Cdc42 and RhoA, and to interact with alpha-catenin and Arf6. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239860 Cd Length: 196 Bit Score: 56.64 E-value: 3.75e-09
|
||||||||
RhoGAP_Bcr | cd04387 | RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr ... |
81-164 | 9.80e-09 | ||||
RhoGAP_Bcr: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of Bcr (breakpoint cluster region protein)-like proteins. Bcr is a multidomain protein with a variety of enzymatic functions. It contains a RhoGAP and a Rho GEF domain, a Ser/Thr kinase domain, an N-terminal oligomerization domain, and a C-terminal PDZ binding domain, in addition to PH and C2 domains. Bcr is a negative regulator of: i) RacGTPase, via the Rho GAP domain, ii) the Ras-Raf-MEK-ERK pathway, via phosphorylation of the Ras binding protein AF-6, and iii) the Wnt signaling pathway through binding beta-catenin. Bcr can form a complex with beta-catenin and Tcf1. The Wnt signaling pathway is involved in cell proliferation, differentiation, and cell renewal. Bcr was discovered as a fusion partner of Abl. The Bcr-Abl fusion is characteristic for a large majority of chronic myelogenous leukemias (CML). Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239852 [Multi-domain] Cd Length: 196 Bit Score: 55.32 E-value: 9.80e-09
|
||||||||
RhoGAP_srGAP | cd04383 | RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
83-142 | 1.21e-08 | ||||
RhoGAP_srGAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in srGAPs. srGAPs are components of the intracellular part of Slit-Robo signalling pathway that is important for axon guidance and cell migration. srGAPs contain an N-terminal FCH domain, a central RhoGAP domain and a C-terminal SH3 domain; this SH3 domain interacts with the intracellular proline-rich-tail of the Roundabout receptor (Robo). This interaction with Robo then activates the rhoGAP domain which in turn inhibits Cdc42 activity. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239848 Cd Length: 188 Bit Score: 54.73 E-value: 1.21e-08
|
||||||||
RhoGAP_chimaerin | cd04372 | RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
83-190 | 3.97e-08 | ||||
RhoGAP_chimaerin: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of chimaerins. Chimaerins are a family of phorbolester- and diacylglycerol-responsive GAPs specific for the Rho-like GTPase Rac. Chimaerins exist in two alternative splice forms that each contain a C-terminal GAP domain, and a central C1 domain which binds phorbol esters, inducing a conformational change that activates the protein; one splice form is lacking the N-terminal Src homology-2 (SH2) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239837 [Multi-domain] Cd Length: 194 Bit Score: 53.67 E-value: 3.97e-08
|
||||||||
RhoGAP_ARHGAP27_15_12_9 | cd04403 | RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
63-163 | 4.40e-08 | ||||
RhoGAP_ARHGAP27_15_12_9: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ARHGAP27 (also called CAMGAP1), ARHGAP15, 12 and 9-like proteins; This subgroup of ARHGAPs are multidomain proteins that contain RhoGAP, PH, SH3 and WW domains. Most members that are studied show GAP activity towards Rac1, some additionally show activity towards Cdc42. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239868 [Multi-domain] Cd Length: 187 Bit Score: 53.16 E-value: 4.40e-08
|
||||||||
RhoGAP_ARHGAP6 | cd04376 | RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
83-193 | 1.32e-07 | ||||
RhoGAP_ARHGAP6: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP6-like proteins. ArhGAP6 shows GAP activity towards RhoA, but not towards Cdc42 and Rac1. ArhGAP6 is often deleted in microphthalmia with linear skin defects syndrome (MLS); MLS is a severe X-linked developmental disorder. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239841 Cd Length: 206 Bit Score: 52.06 E-value: 1.32e-07
|
||||||||
RhoGAP_KIAA1688 | cd04389 | RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in ... |
142-183 | 7.54e-07 | ||||
RhoGAP_KIAA1688: GTPase-activator protein (GAP) domain for Rho-like GTPases found in KIAA1688-like proteins; KIAA1688 is a protein of unknown function that contains a RhoGAP domain and a myosin tail homology 4 (MyTH4) domain. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239854 Cd Length: 187 Bit Score: 49.70 E-value: 7.54e-07
|
||||||||
RhoGAP_ARAP | cd04385 | RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ... |
83-180 | 8.98e-07 | ||||
RhoGAP_ARAP: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in ARAPs. ARAPs (also known as centaurin deltas) contain, besides the RhoGAP domain, an Arf GAP, ankyrin repeat ras-associating, and PH domains. Since their ArfGAP activity is PIP3-dependent, ARAPs are considered integration points for phosphoinositide, Arf and Rho signaling. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239850 Cd Length: 184 Bit Score: 49.23 E-value: 8.98e-07
|
||||||||
RhoGAP_ARHGAP18 | cd04391 | RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
62-195 | 9.82e-07 | ||||
RhoGAP_ARHGAP18: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP18-like proteins. The function of ArhGAP18 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239856 Cd Length: 216 Bit Score: 49.65 E-value: 9.82e-07
|
||||||||
RhoGAP_fRGD1 | cd04398 | RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
63-158 | 1.82e-06 | ||||
RhoGAP_fRGD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal RGD1-like proteins. Yeast Rgd1 is a GAP protein for Rho3 and Rho4 and plays a role in low-pH response. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239863 Cd Length: 192 Bit Score: 48.55 E-value: 1.82e-06
|
||||||||
RhoGAP_Graf | cd04374 | RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase ... |
130-170 | 2.45e-06 | ||||
RhoGAP_Graf: GTPase-activator protein (GAP) domain for Rho-like GTPases found in GRAF (GTPase regulator associated with focal adhesion kinase); Graf is a multi-domain protein, containing SH3 and PH domains, that binds focal adhesion kinase and influences cytoskeletal changes mediated by Rho proteins. Graf exhibits GAP activity toward RhoA and Cdc42, but only weakly activates Rac1. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239839 Cd Length: 203 Bit Score: 48.54 E-value: 2.45e-06
|
||||||||
RhoGAP_p190 | cd04373 | RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
63-121 | 4.23e-06 | ||||
RhoGAP_p190: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of p190-like proteins. p190, also named RhoGAP5, plays a role in neuritogenesis and axon branch stability. p190 shows a preference for Rho, over Rac and Cdc42, and consists of an N-terminal GTPase domain and a C-terminal GAP domain. The central portion of p190 contains important regulatory phosphorylation sites. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239838 Cd Length: 185 Bit Score: 47.45 E-value: 4.23e-06
|
||||||||
RhoGAP_myosin_IX | cd04377 | RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
63-173 | 2.25e-05 | ||||
RhoGAP_myosin_IX: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in class IX myosins. Class IX myosins contain a characteristic head domain, a neck domain, a tail domain which contains a C6H2-zinc binding motif and a RhoGAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239842 Cd Length: 186 Bit Score: 45.12 E-value: 2.25e-05
|
||||||||
RhoGAP_ARHGAP19 | cd04392 | RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
132-193 | 7.59e-05 | ||||
RhoGAP_ARHGAP19: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP19-like proteins. The function of ArhGAP19 is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239857 Cd Length: 208 Bit Score: 43.99 E-value: 7.59e-05
|
||||||||
RhoGAP_SYD1 | cd04379 | RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present ... |
63-121 | 7.99e-05 | ||||
RhoGAP_SYD1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in SYD-1_like proteins. Syd-1, first identified and best studied in C.elegans, has been shown to play an important role in neuronal development by specifying axonal properties. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239844 Cd Length: 207 Bit Score: 43.99 E-value: 7.99e-05
|
||||||||
SMC_prok_B | TIGR02168 | chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ... |
433-523 | 9.88e-05 | ||||
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 45.43 E-value: 9.88e-05
|
||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
433-537 | 1.60e-04 | ||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 44.37 E-value: 1.60e-04
|
||||||||
RhoGAP_fBEM3 | cd04400 | RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of ... |
62-157 | 2.43e-04 | ||||
RhoGAP_fBEM3: RhoGAP (GTPase-activator [GAP] protein for Rho-like small GTPases) domain of fungal BEM3-like proteins. Bem3 is a GAP protein of Cdc42, and is specifically involved in the control of the initial assembly of the septin ring in yeast bud formation. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239865 [Multi-domain] Cd Length: 190 Bit Score: 42.35 E-value: 2.43e-04
|
||||||||
RhoGap_RalBP1 | cd04381 | RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
63-131 | 4.28e-04 | ||||
RhoGap_RalBP1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in RalBP1 proteins, also known as RLIP, RLIP76 or cytocentrin. RalBP1 plays an important role in endocytosis during interphase. During mitosis, RalBP1 transiently associates with the centromere and has been shown to play an essential role in the proper assembly of the mitotic apparatus. RalBP1 is an effector of the Ral GTPase which itself is an effector of Ras. RalBP1 contains a RhoGAP domain, which shows weak activity towards Rac1 and Cdc42, but not towards Ral, and a Ral effector domain binding motif. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239846 [Multi-domain] Cd Length: 182 Bit Score: 41.27 E-value: 4.28e-04
|
||||||||
RhoGAP_GMIP_PARG1 | cd04378 | RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
132-175 | 4.67e-04 | ||||
RhoGAP_GMIP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of GMIP (Gem interacting protein) and PARG1 (PTPL1-associated RhoGAP1). GMIP plays important roles in neurite growth and axonal guidance, and interacts with Gem, a member of the RGK subfamily of the Ras small GTPase superfamily, through the N-terminal half of the protein. GMIP contains a C-terminal RhoGAP domain. GMIP inhibits RhoA function, but is inactive towards Rac1 and Cdc41. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239843 Cd Length: 203 Bit Score: 41.64 E-value: 4.67e-04
|
||||||||
SMC_prok_A | TIGR02169 | chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ... |
433-530 | 5.56e-04 | ||||
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins] Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 42.75 E-value: 5.56e-04
|
||||||||
RhoGAP_PARG1 | cd04409 | RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
132-177 | 5.65e-04 | ||||
RhoGAP_PARG1: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of PARG1 (PTPL1-associated RhoGAP1). PARG1 was originally cloned as an interaction partner of PTPL1, an intracellular protein-tyrosine phosphatase. PARG1 interacts with Rap2, also a member of the Ras small GTPase superfamily whose exact function is unknown, and shows strong preference for Rho. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239874 Cd Length: 211 Bit Score: 41.33 E-value: 5.65e-04
|
||||||||
DUF4670 | pfam15709 | Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins ... |
394-522 | 8.78e-04 | ||||
Domain of unknown function (DUF4670); This family of proteins is found in eukaryotes. Proteins in this family are typically between 373 and 763 amino acids in length. Pssm-ID: 464815 [Multi-domain] Cd Length: 522 Bit Score: 41.86 E-value: 8.78e-04
|
||||||||
RhoGAP_fSAC7_BAG7 | cd04396 | RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
83-153 | 8.91e-04 | ||||
RhoGAP_fSAC7_BAG7: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of fungal SAC7 and BAG7-like proteins. Both proteins are GTPase activating proteins of Rho1, but differ functionally in vivo: SAC7, but not BAG7, is involved in the control of Rho1-mediated activation of the PKC-MPK1 pathway. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239861 Cd Length: 225 Bit Score: 40.86 E-value: 8.91e-04
|
||||||||
RhoGAP_myosin_IXB | cd04407 | RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
117-185 | 1.07e-03 | ||||
RhoGAP_myosin_IXB: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXB. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239872 [Multi-domain] Cd Length: 186 Bit Score: 40.36 E-value: 1.07e-03
|
||||||||
Smc | COG1196 | Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; ... |
447-523 | 1.37e-03 | ||||
Chromosome segregation ATPase Smc [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 440809 [Multi-domain] Cd Length: 983 Bit Score: 41.46 E-value: 1.37e-03
|
||||||||
PRK09039 | PRK09039 | peptidoglycan -binding protein; |
441-538 | 1.65e-03 | ||||
peptidoglycan -binding protein; Pssm-ID: 181619 [Multi-domain] Cd Length: 343 Bit Score: 40.72 E-value: 1.65e-03
|
||||||||
Tropomyosin_1 | pfam12718 | Tropomyosin like; This family is a set of eukaryotic tropomyosins. Within the yeast Tpm1 and ... |
447-522 | 1.74e-03 | ||||
Tropomyosin like; This family is a set of eukaryotic tropomyosins. Within the yeast Tpm1 and Tpm2, biochemical and sequence analyses indicate that Tpm2p spans four actin monomers along a filament, whereas Tpm1p spans five. Despite its shorter length, Tpm2p can compete with Tpm1p for binding to F-actin. Over-expression of Tpm2p in vivo alters the axial budding of haploids to a bipolar pattern, and this can be partially suppressed by co-over-expression of Tpm1p. This suggests distinct functions for the two tropomyosins, and indicates that the ratio between them is important for correct morphogenesis. The family also contains higher eukaryote Tpm3 members. Pssm-ID: 403808 [Multi-domain] Cd Length: 142 Bit Score: 38.82 E-value: 1.74e-03
|
||||||||
YhaN | COG4717 | Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; |
440-533 | 1.75e-03 | ||||
Uncharacterized conserved protein YhaN, contains AAA domain [Function unknown]; Pssm-ID: 443752 [Multi-domain] Cd Length: 641 Bit Score: 41.29 E-value: 1.75e-03
|
||||||||
GumC | COG3206 | Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; |
440-521 | 2.18e-03 | ||||
Exopolysaccharide export protein/domain GumC/Wzc1 [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 442439 [Multi-domain] Cd Length: 687 Bit Score: 40.77 E-value: 2.18e-03
|
||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
29-54 | 2.72e-03 | ||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 37.54 E-value: 2.72e-03
|
||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
440-522 | 4.21e-03 | ||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 39.50 E-value: 4.21e-03
|
||||||||
COG4372 | COG4372 | Uncharacterized protein, contains DUF3084 domain [Function unknown]; |
440-531 | 6.13e-03 | ||||
Uncharacterized protein, contains DUF3084 domain [Function unknown]; Pssm-ID: 443500 [Multi-domain] Cd Length: 370 Bit Score: 39.12 E-value: 6.13e-03
|
||||||||
RhoGAP_myosin_IXA | cd04406 | RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain ... |
80-121 | 6.23e-03 | ||||
RhoGAP_myosin_IXA: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain present in myosins IXA. Class IX myosins contain a characteristic head domain, a neck domain and a tail domain which contains a C6H2-zinc binding motif and a Rho-GAP domain. Class IX myosins are single-headed, processive myosins that are partly cytoplasmic, and partly associated with membranes and the actin cytoskeleton. Class IX myosins are implicated in the regulation of neuronal morphogenesis and function of sensory systems, like the inner ear. There are two major isoforms, myosin IXA and IXB with several splice variants, which are both expressed in developing neurons. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239871 Cd Length: 186 Bit Score: 38.06 E-value: 6.23e-03
|
||||||||
ERM_helical | pfam20492 | Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related ... |
450-523 | 7.07e-03 | ||||
Ezrin/radixin/moesin, alpha-helical domain; The ERM family consists of three closely-related proteins, ezrin, radixin and moesin. Ezrin was first identified as a constituent of microvilli, radixin as a barbed, end-capping actin-modulating protein from isolated junctional fractions, and moesin as a heparin binding protein. A tumour suppressor molecule responsible for neurofibromatosis type 2 (NF2) is highly similar to ERM proteins and has been designated merlin (moesin-ezrin-radixin-like protein). ERM molecules contain 3 domains, an N-terminal globular domain, an extended alpha-helical domain and a charged C-terminal domain (pfam00769). Ezrin, radixin and merlin also contain a polyproline linker region between the helical and C-terminal domains. The N-terminal domain is highly conserved and is also found in merlin, band 4.1 proteins and members of the band 4.1 superfamily, designated the FERM domain. ERM proteins crosslink actin filaments with plasma membranes. They co-localize with CD44 at actin filament plasma membrane interaction sites, associating with CD44 via their N-terminal domains and with actin filaments via their C-terminal domains. This is the alpha-helical domain, which is involved in intramolecular masking of protein-protein interaction sites, regulating the activity of this proteins. Pssm-ID: 466641 [Multi-domain] Cd Length: 120 Bit Score: 36.82 E-value: 7.07e-03
|
||||||||
DUF4200 | pfam13863 | Domain of unknown function (DUF4200); This family is found in eukaryotes. It is a coiled-coil ... |
445-532 | 7.44e-03 | ||||
Domain of unknown function (DUF4200); This family is found in eukaryotes. It is a coiled-coil domain of unknwon function. Pssm-ID: 464003 [Multi-domain] Cd Length: 119 Bit Score: 36.78 E-value: 7.44e-03
|
||||||||
RhoGAP-ARHGAP11A | cd04394 | RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ... |
128-158 | 7.80e-03 | ||||
RhoGAP-ARHGAP11A: RhoGAP (GTPase-activator protein [GAP] for Rho-like small GTPases) domain of ArhGAP11A-like proteins. The mouse homolog of human ArhGAP11A has been detected as a gene exclusively expressed in immature ganglion cells, potentially playing a role in retinal development. The exact function of ArhGAP11A is unknown. Small GTPases cluster into distinct families, and all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of GTPases activates effectors involved in a wide variety of developmental processes, including regulation of cytoskeleton formation, cell proliferation and the JNK signaling pathway. GTPases generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GAPs that enhance the rate of GTP hydrolysis by several orders of magnitude. Pssm-ID: 239859 [Multi-domain] Cd Length: 202 Bit Score: 37.84 E-value: 7.80e-03
|
||||||||
MukB | COG3096 | Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell ... |
433-541 | 8.27e-03 | ||||
Chromosome condensin MukBEF, ATPase and DNA-binding subunit MukB [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 442330 [Multi-domain] Cd Length: 1470 Bit Score: 39.17 E-value: 8.27e-03
|
||||||||
Myosin_tail_1 | pfam01576 | Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and ... |
447-523 | 8.59e-03 | ||||
Myosin tail; The myosin molecule is a multi-subunit complex made up of two heavy chains and four light chains it is a fundamental contractile protein found in all eukaryote cell types. This family consists of the coiled-coil myosin heavy chain tail region. The coiled-coil is composed of the tail from two molecules of myosin. These can then assemble into the macromolecular thick filament. The coiled-coil region provides the structural backbone the thick filament. Pssm-ID: 460256 [Multi-domain] Cd Length: 1081 Bit Score: 39.00 E-value: 8.59e-03
|
||||||||
Blast search parameters | ||||
|