regulating synaptic membrane exocytosis protein 1 isoform X39 [Rattus norvegicus]
RIM family C2 domain-containing protein( domain architecture ID 10134185)
RIM (Rab-3-interacting molecule) family C2 domain-containing protein may function as a synaptic protein that is essential for normal neurotransmitter release
List of domain hits
Name | Accession | Description | Interval | E-value | |||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
229-374 | 2.48e-101 | |||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. : Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 296.61 E-value: 2.48e-101
|
|||||||
Name | Accession | Description | Interval | E-value | |||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
229-374 | 2.48e-101 | |||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 296.61 E-value: 2.48e-101
|
|||||||
C2 | pfam00168 | C2 domain; |
257-364 | 1.84e-25 | |||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 99.32 E-value: 1.84e-25
|
|||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
258-361 | 2.18e-16 | |||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 74.06 E-value: 2.18e-16
|
|||||||
Name | Accession | Description | Interval | E-value | |||
C2B_RIM1alpha | cd04028 | C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
229-374 | 2.48e-101 | |||
C2 domain second repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175994 [Multi-domain] Cd Length: 146 Bit Score: 296.61 E-value: 2.48e-101
|
|||||||
C2 | pfam00168 | C2 domain; |
257-364 | 1.84e-25 | |||
C2 domain; Pssm-ID: 425499 [Multi-domain] Cd Length: 104 Bit Score: 99.32 E-value: 1.84e-25
|
|||||||
C2B_PI3K_class_II | cd08381 | C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are ... |
246-364 | 1.91e-22 | |||
C2 domain second repeat present in class II phosphatidylinositol 3-kinases (PI3Ks); There are 3 classes of PI3Ks based on structure, regulation, and specificity. All classes contain a N-terminal C2 domain, a PIK domain, and a kinase catalytic domain. Unlike class I and class III, class II PI3Ks have additionally a PX domain and a C-terminal C2 domain containing a nuclear localization signal both of which bind phospholipids though in a slightly different fashion. PI3Ks (AKA phosphatidylinositol (PtdIns) 3-kinases) regulate cell processes such as cell growth, differentiation, proliferation, and motility. PI3Ks work on phosphorylation of phosphatidylinositol, phosphatidylinositide (4)P (PtdIns (4)P),2 or PtdIns(4,5)P2. Specifically they phosphorylate the D3 hydroxyl group of phosphoinositol lipids on the inositol ring. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176027 [Multi-domain] Cd Length: 122 Bit Score: 91.59 E-value: 1.91e-22
|
|||||||
C2A_SLP | cd08521 | C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share ... |
246-364 | 9.04e-19 | |||
C2 domain first repeat present in Synaptotagmin-like proteins; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176056 [Multi-domain] Cd Length: 123 Bit Score: 81.53 E-value: 9.04e-19
|
|||||||
C2 | smart00239 | Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, ... |
258-361 | 2.18e-16 | |||
Protein kinase C conserved region 2 (CalB); Ca2+-binding motif present in phospholipases, protein kinases C, and synaptotagmins (among others). Some do not appear to contain Ca2+-binding sites. Particular C2s appear to bind phospholipids, inositol polyphosphates, and intracellular proteins. Unusual occurrence in perforin. Synaptotagmin and PLC C2s are permuted in sequence with respect to N- and C-terminal beta strands. SMART detects C2 domains using one or both of two profiles. Pssm-ID: 214577 [Multi-domain] Cd Length: 101 Bit Score: 74.06 E-value: 2.18e-16
|
|||||||
C2 | cd00030 | C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed ... |
259-364 | 3.81e-16 | |||
C2 domain; The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 175973 [Multi-domain] Cd Length: 102 Bit Score: 73.64 E-value: 3.81e-16
|
|||||||
C2A_RIM1alpha | cd04031 | C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are ... |
248-364 | 3.17e-15 | |||
C2 domain first repeat contained in Rab3-interacting molecule (RIM) proteins; RIMs are believed to organize specialized sites of the plasma membrane called active zones. They also play a role in controlling neurotransmitter release, plasticity processes, as well as memory and learning. RIM contains an N-terminal zinc finger domain, a PDZ domain, and two C-terminal C2 domains (C2A, C2B). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology and do not bind Ca2+. Pssm-ID: 175997 [Multi-domain] Cd Length: 125 Bit Score: 71.51 E-value: 3.17e-15
|
|||||||
C2A_SLP-1_2 | cd08393 | C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members ... |
246-364 | 4.34e-15 | |||
C2 domain first repeat present in Synaptotagmin-like proteins 1 and 2; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike Slp3 and Slp4/granuphilin which are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176039 [Multi-domain] Cd Length: 125 Bit Score: 71.31 E-value: 4.34e-15
|
|||||||
C2B_Synaptotagmin | cd00276 | C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking ... |
246-343 | 8.47e-15 | |||
C2 domain second repeat present in Synaptotagmin; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. There are several classes of Synaptotagmins. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175975 [Multi-domain] Cd Length: 134 Bit Score: 70.69 E-value: 8.47e-15
|
|||||||
C2_PKC_alpha_gamma | cd04026 | C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha ... |
246-364 | 6.38e-14 | |||
C2 domain in Protein Kinase C (PKC) alpha and gamma; A single C2 domain is found in PKC alpha and gamma. The PKC family of serine/threonine kinases regulates apoptosis, proliferation, migration, motility, chemo-resistance, and differentiation. There are 3 groups: group 1(alpha, betaI, beta II, gamma) which require phospholipids and calcium, group 2 (delta, epsilon, theta, eta) which do not require calcium for activation, and group 3 (xi, iota/lambda) which are atypical and can be activated in the absence of diacylglycerol and calcium. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 175992 [Multi-domain] Cd Length: 131 Bit Score: 68.06 E-value: 6.38e-14
|
|||||||
C2C_KIAA1228 | cd04030 | C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins ... |
246-364 | 2.07e-13 | |||
C2 domain third repeat present in uncharacterized human KIAA1228-like proteins; KIAA proteins are uncharacterized human proteins. They were compiled by the Kazusa mammalian cDNA project which identified more than 2000 human genes. They are identified by 4 digit codes that precede the KIAA designation. Many KIAA genes are still functionally uncharacterized including KIAA1228. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175996 [Multi-domain] Cd Length: 127 Bit Score: 66.53 E-value: 2.07e-13
|
|||||||
C2B_Synaptotagmin-3-5-6-9-10 | cd08403 | C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a ... |
257-347 | 2.33e-12 | |||
C2 domain second repeat present in Synaptotagmins 3, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 3, a member of class 3 synaptotagmins, is located in the brain and localized to the active zone and plasma membrane. It functions as a Ca2+ sensor for fast exocytosis. It, along with synaptotagmins 5,6, and 10, has disulfide bonds at its N-terminus. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176048 [Multi-domain] Cd Length: 134 Bit Score: 63.68 E-value: 2.33e-12
|
|||||||
C2A_Synaptotagmin-8 | cd08387 | C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking ... |
257-364 | 5.89e-12 | |||
C2A domain first repeat present in Synaptotagmin 8; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176033 [Multi-domain] Cd Length: 124 Bit Score: 62.42 E-value: 5.89e-12
|
|||||||
C2A_SLP-4_5 | cd04029 | C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members ... |
246-364 | 7.80e-12 | |||
C2 domain first repeat present in Synaptotagmin-like proteins 4 and 5; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp4/granuphilin promotes dense-core vesicle exocytosis. The C2A domain of Slp4 is Ca2+ dependent. Slp5 mRNA has been shown to be restricted to human placenta and liver suggesting a role in Rab27A-dependent membrane trafficking in specific tissues. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175995 [Multi-domain] Cd Length: 125 Bit Score: 62.07 E-value: 7.80e-12
|
|||||||
C2A_Synaptotagmin-15-17 | cd08390 | C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a ... |
258-366 | 2.37e-11 | |||
C2A domain first repeat present in Synaptotagmins 15 and 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176036 [Multi-domain] Cd Length: 123 Bit Score: 60.73 E-value: 2.37e-11
|
|||||||
C2B_Synaptotagmin-1 | cd08402 | C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking ... |
256-336 | 2.07e-10 | |||
C2 domain second repeat present in Synaptotagmin 1; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of the class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis. It, like synaptotagmin-2, has an N-glycosylated N-terminus. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176047 [Multi-domain] Cd Length: 136 Bit Score: 58.18 E-value: 2.07e-10
|
|||||||
C2B_Synaptotagmin-4 | cd08404 | C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking ... |
257-317 | 3.88e-10 | |||
C2 domain second repeat present in Synaptotagmin 4; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 4, a member of class 4 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmin-11, has an Asp to Ser substitution in its C2A domain. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176049 [Multi-domain] Cd Length: 136 Bit Score: 57.44 E-value: 3.88e-10
|
|||||||
C2A_SLP-3 | cd08392 | C2 domain first repeat present in Synaptotagmin-like protein 3; All Slp members basically ... |
245-364 | 2.40e-09 | |||
C2 domain first repeat present in Synaptotagmin-like protein 3; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. SHD of Slp (except for the Slp4-SHD) function as a specific Rab27A/B-binding domain. In addition to Slp, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. Little is known about the expression or localization of Slp3. The C2A domain of Slp3 is Ca2+ dependent. It has been demonstrated that Slp3 promotes dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176038 [Multi-domain] Cd Length: 128 Bit Score: 55.22 E-value: 2.40e-09
|
|||||||
C2A_Synaptotagmin-7 | cd08386 | C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
245-366 | 2.77e-09 | |||
C2A domain first repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176032 [Multi-domain] Cd Length: 125 Bit Score: 54.64 E-value: 2.77e-09
|
|||||||
C2B_SLP_1-2-3-4 | cd04020 | C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically ... |
255-361 | 4.17e-09 | |||
C2 domain second repeat present in Synaptotagmin-like proteins 1-4; All Slp members basically share an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains (named the C2A domain and the C2B domain) with the SHD and C2 domains being separated by a linker sequence of various length. Slp1/JFC1 and Slp2/exophilin 4 promote granule docking to the plasma membrane. Additionally, their C2A domains are both Ca2+ independent, unlike the case in Slp3 and Slp4/granuphilin in which their C2A domains are Ca2+ dependent. It is thought that SHD (except for the Slp4-SHD) functions as a specific Rab27A/B-binding domain. In addition to Slps, rabphilin, Noc2, and Munc13-4 also function as Rab27-binding proteins. It has been demonstrated that Slp3 and Slp4/granuphilin promote dense-core vesicle exocytosis. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175987 [Multi-domain] Cd Length: 162 Bit Score: 55.02 E-value: 4.17e-09
|
|||||||
C2B_Synaptotagmin-12 | cd08406 | C2 domain second repeat present in Synaptotagmin 12; Synaptotagmin is a membrane-trafficking ... |
258-320 | 6.34e-09 | |||
C2 domain second repeat present in Synaptotagmin 12; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 12, a member of class 6 synaptotagmins, is located in the brain. It functions are unknown. It, like synaptotagmins 8 and 13, do not have any consensus Ca2+ binding sites. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176051 [Multi-domain] Cd Length: 136 Bit Score: 54.03 E-value: 6.34e-09
|
|||||||
C2A_Synaptotagmin-1-5-6-9-10 | cd08385 | C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a ... |
256-361 | 8.48e-09 | |||
C2A domain first repeat present in Synaptotagmins 1, 5, 6, 9, and 10; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 1, a member of class 1 synaptotagmins, is located in the brain and endocranium and localized to the synaptic vesicles and secretory granules. It functions as a Ca2+ sensor for fast exocytosis as do synaptotagmins 5, 6, and 10. It is distinguished from the other synaptotagmins by having an N-glycosylated N-terminus. Synaptotagmins 5, 6, and 10, members of class 3 synaptotagmins, are located primarily in the brain and localized to the active zone and plasma membrane. They is distinguished from the other synaptotagmins by having disulfide bonds at its N-terminus. Synaptotagmin 6 also regulates the acrosome reaction, a unique Ca2+-regulated exocytosis, in sperm. Synaptotagmin 9, a class 5 synaptotagmins, is located in the brain and localized to the synaptic vesicles. It is thought to be a Ca2+-sensor for dense-core vesicle exocytosis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176031 [Multi-domain] Cd Length: 124 Bit Score: 53.42 E-value: 8.48e-09
|
|||||||
C2B_Rabphilin_Doc2 | cd08384 | C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
248-337 | 8.91e-09 | |||
C2 domain second repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176030 [Multi-domain] Cd Length: 133 Bit Score: 53.51 E-value: 8.91e-09
|
|||||||
C2B_Synaptotagmin-7 | cd08405 | C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking ... |
257-317 | 1.32e-08 | |||
C2 domain second repeat present in Synaptotagmin 7; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 7, a member of class 2 synaptotagmins, is located in presynaptic plasma membranes in neurons, dense-core vesicles in endocrine cells, and lysosomes in fibroblasts. It has been shown to play a role in regulation of Ca2+-dependent lysosomal exocytosis in fibroblasts and may also function as a vesicular Ca2+-sensor. It is distinguished from the other synaptotagmins by having over 12 splice forms. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176050 [Multi-domain] Cd Length: 136 Bit Score: 53.19 E-value: 1.32e-08
|
|||||||
C2A_Rabphilin_Doc2 | cd04035 | C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons ... |
258-352 | 1.91e-08 | |||
C2 domain first repeat present in Rabphilin and Double C2 domain; Rabphilin is found neurons and in neuroendrocrine cells, while Doc2 is found not only in the brain but in tissues, including mast cells, chromaffin cells, and osteoblasts. Rabphilin and Doc2s share highly homologous tandem C2 domains, although their N-terminal structures are completely different: rabphilin contains an N-terminal Rab-binding domain (RBD),7 whereas Doc2 contains an N-terminal Munc13-1-interacting domain (MID). C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176000 [Multi-domain] Cd Length: 123 Bit Score: 52.28 E-value: 1.91e-08
|
|||||||
C2A_Synaptotagmin-like | cd04024 | C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a ... |
257-365 | 2.42e-07 | |||
C2 domain first repeat present in Synaptotagmin-like proteins; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 175990 [Multi-domain] Cd Length: 128 Bit Score: 49.34 E-value: 2.42e-07
|
|||||||
C2B_Synaptotagmin-17 | cd08410 | C2 domain second repeat present in Synaptotagmin 17; Synaptotagmin is a membrane-trafficking ... |
257-331 | 1.57e-06 | |||
C2 domain second repeat present in Synaptotagmin 17; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmin 17 is located in the brain, kidney, and prostate and is thought to be a peripheral membrane protein. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176055 [Multi-domain] Cd Length: 135 Bit Score: 47.19 E-value: 1.57e-06
|
|||||||
C2A_Synaptotagmin-4-11 | cd08388 | C2A domain first repeat present in Synaptotagmins 4 and 11; Synaptotagmin is a ... |
256-316 | 3.17e-06 | |||
C2A domain first repeat present in Synaptotagmins 4 and 11; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. Synaptotagmins 4 and 11, class 4 synaptotagmins, are located in the brain. Their functions are unknown. They are distinguished from the other synaptotagmins by having and Asp to Ser substitution in their C2A domains. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-I topology. Pssm-ID: 176034 [Multi-domain] Cd Length: 128 Bit Score: 46.19 E-value: 3.17e-06
|
|||||||
C2B_Munc13-like | cd04009 | C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are ... |
258-338 | 5.29e-06 | |||
C2 domain second repeat in Munc13 (mammalian uncoordinated)-like proteins; C2-like domains are thought to be involved in phospholipid binding in a Ca2+ independent manner in both Unc13 and Munc13. Caenorabditis elegans Unc13 has a central domain with sequence similarity to PKC, which includes C1 and C2-related domains. Unc13 binds phorbol esters and DAG with high affinity in a phospholipid manner. Mutations in Unc13 results in abnormal neuronal connections and impairment in cholinergic neurotransmission in the nematode. Munc13 is the mammalian homolog which are expressed in the brain. There are 3 isoforms (Munc13-1, -2, -3) and are thought to play a role in neurotransmitter release and are hypothesized to be high-affinity receptors for phorbol esters. Unc13 and Munc13 contain both C1 and C2 domains. There are two C2 related domains present, one central and one at the carboxyl end. Munc13-1 contains a third C2-like domain. Munc13 interacts with syntaxin, synaptobrevin, and synaptotagmin suggesting a role for these as scaffolding proteins. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the third C2 repeat, C2C, and has a type-II topology. Pssm-ID: 175976 [Multi-domain] Cd Length: 133 Bit Score: 45.69 E-value: 5.29e-06
|
|||||||
C2_RGS-like | cd08685 | C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of ... |
246-364 | 5.83e-06 | |||
C2 domain of the Regulator Of G-Protein Signaling (RGS) family; This CD contains members of the regulator of G-protein signaling (RGS) family. RGS is a GTPase activating protein which inhibits G-protein mediated signal transduction. The protein is largely cytosolic, but G-protein activation leads to translocation of this protein to the plasma membrane. A nuclear form of this protein has also been described, but its sequence has not been identified. There are multiple alternatively spliced transcript variants in this family with some members having additional domains (ex. PDZ and RGS) downstream of the C2 domain. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176067 [Multi-domain] Cd Length: 119 Bit Score: 45.14 E-value: 5.83e-06
|
|||||||
C2A_MCTP_PRT_plant | cd04022 | C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
259-348 | 1.29e-05 | |||
C2 domain first repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the first C2 repeat, C2A, and has a type-II topology. Pssm-ID: 175989 [Multi-domain] Cd Length: 127 Bit Score: 44.25 E-value: 1.29e-05
|
|||||||
C2D_Tricalbin-like | cd04040 | C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
259-353 | 1.88e-05 | |||
C2 domain fourth repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fifth C2 repeat, C2E, and has a type-II topology. Pssm-ID: 176005 [Multi-domain] Cd Length: 115 Bit Score: 43.33 E-value: 1.88e-05
|
|||||||
C2B_Synaptotagmin-14_16 | cd08408 | C2 domain second repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are ... |
257-316 | 7.72e-05 | |||
C2 domain second repeat present in Synaptotagmins 14 and 16; Synaptotagmin 14 and 16 are membrane-trafficking proteins in specific tissues outside the brain. Both of these contain C-terminal tandem C2 repeats, but only Synaptotagmin 14 has an N-terminal transmembrane domain and a putative fatty-acylation site. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium and this is indeed the case here. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176053 [Multi-domain] Cd Length: 138 Bit Score: 42.36 E-value: 7.72e-05
|
|||||||
C2B_MCTP_PRT_plant | cd08378 | C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); ... |
259-331 | 2.13e-04 | |||
C2 domain second repeat found in Multiple C2 domain and Transmembrane region Proteins (MCTP); plant subset; MCTPs are involved in Ca2+ signaling at the membrane. Plant-MCTPs are composed of a variable N-terminal sequence, four C2 domains, two transmembrane regions (TMRs), and a short C-terminal sequence. It is one of four protein classes that are anchored to membranes via a transmembrane region; the others being synaptotagmins, extended synaptotagmins, and ferlins. MCTPs are the only membrane-bound C2 domain proteins that contain two functional TMRs. MCTPs are unique in that they bind Ca2+ but not phospholipids. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176024 [Multi-domain] Cd Length: 121 Bit Score: 40.76 E-value: 2.13e-04
|
|||||||
C2B_Tricalbin-like | cd04052 | C2 domain second repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are ... |
278-364 | 3.05e-04 | |||
C2 domain second repeat present in Tricalbin-like proteins; 5 to 6 copies of the C2 domain are present in Tricalbin, a yeast homolog of Synaptotagmin, which is involved in membrane trafficking and sorting. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 176017 [Multi-domain] Cd Length: 111 Bit Score: 39.89 E-value: 3.05e-04
|
|||||||
C2_C21orf25-like | cd08678 | C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The ... |
259-352 | 3.93e-04 | |||
C2 domain found in the Human chromosome 21 open reading frame 25 (C21orf25) protein; The members in this cd are named after the Human C21orf25 which contains a single C2 domain. Several other members contain a C1 domain downstream of the C2 domain. No other information on this protein is currently known. The C2 domain was first identified in PKC. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Pssm-ID: 176060 [Multi-domain] Cd Length: 126 Bit Score: 40.04 E-value: 3.93e-04
|
|||||||
C2B_Ferlin | cd04011 | C2 domain second repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
258-321 | 2.16e-03 | |||
C2 domain second repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-II topology. Pssm-ID: 175978 [Multi-domain] Cd Length: 111 Bit Score: 37.56 E-value: 2.16e-03
|
|||||||
C2_PLC_like | cd00275 | C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in ... |
256-317 | 2.37e-03 | |||
C2 domain present in Phosphoinositide-specific phospholipases C (PLC); PLCs are involved in the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to d-myo-inositol-1,4,5-trisphosphate (1,4,5-IP3) and sn-1,2-diacylglycerol (DAG). 1,4,5-IP3 and DAG are second messengers in eukaryotic signal transduction cascades. PLC is composed of a N-terminal PH domain followed by a series of EF hands, a catalytic TIM barrel and a C-terminal C2 domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-II topology. Pssm-ID: 175974 [Multi-domain] Cd Length: 128 Bit Score: 37.91 E-value: 2.37e-03
|
|||||||
C2B_RasGAP | cd08675 | C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras ... |
259-366 | 2.77e-03 | |||
C2 domain second repeat of Ras GTPase activating proteins (GAPs); RasGAPs suppress Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. The proteins here all contain two tandem C2 domains, a Ras-GAP domain, and a pleckstrin homology (PH)-like domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. Members here have a type-I topology. Pssm-ID: 176057 [Multi-domain] Cd Length: 137 Bit Score: 37.74 E-value: 2.77e-03
|
|||||||
C2B_RasA3 | cd04010 | C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of ... |
258-380 | 3.16e-03 | |||
C2 domain second repeat present in RAS p21 protein activator 3 (RasA3); RasA3 are members of GTPase activating protein 1 (GAP1), a Ras-specific GAP, which suppresses Ras function by enhancing the GTPase activity of Ras proteins resulting in the inactive GDP-bound form of Ras. In this way it can control cellular proliferation and differentiation. RasA3 contains an N-terminal C2 domain, a Ras-GAP domain, a plextrin homology (PH)-like domain, and a Bruton's Tyrosine Kinase (BTK) zinc binding domain. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 175977 [Multi-domain] Cd Length: 148 Bit Score: 37.76 E-value: 3.16e-03
|
|||||||
C2B_Synaptotagmin-15 | cd08409 | C2 domain second repeat present in Synaptotagmin 15; Synaptotagmin is a membrane-trafficking ... |
246-316 | 5.34e-03 | |||
C2 domain second repeat present in Synaptotagmin 15; Synaptotagmin is a membrane-trafficking protein characterized by a N-terminal transmembrane region, a linker, and 2 C-terminal C2 domains. It is thought to be involved in the trafficking and exocytosis of secretory vesicles in non-neuronal tissues and is Ca2+ independent. Human synaptotagmin 15 has 2 alternatively spliced forms that encode proteins with different C-termini. The larger, SYT15a, contains a N-terminal TM region, a putative fatty-acylation site, and 2 tandem C terminal C2 domains. The smaller, SYT15b, lacks the C-terminal portion of the second C2 domain. Unlike most other synaptotagmins it is nearly absent in the brain and rather is found in the heart, lungs, skeletal muscle, and testis. Previously all synaptotagmins were thought to be calcium sensors in the regulation of neurotransmitter release and hormone secretion, but it has been shown that not all of them bind calcium. Of the 17 identified synaptotagmins only 8 bind calcium (1-3, 5-7, 9, 10). The function of the two C2 domains that bind calcium are: regulating the fusion step of synaptic vesicle exocytosis (C2A) and binding to phosphatidyl-inositol-3,4,5-triphosphate (PIP3) in the absence of calcium ions and to phosphatidylinositol bisphosphate (PIP2) in their presence (C2B). C2B also regulates also the recycling step of synaptic vesicles. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the second C2 repeat, C2B, and has a type-I topology. Pssm-ID: 176054 [Multi-domain] Cd Length: 137 Bit Score: 36.93 E-value: 5.34e-03
|
|||||||
C2D_Ferlin | cd04017 | C2 domain fourth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and ... |
258-332 | 8.03e-03 | |||
C2 domain fourth repeat in Ferlin; Ferlins are involved in vesicle fusion events. Ferlins and other proteins, such as Synaptotagmins, are implicated in facilitating the fusion process when cell membranes fuse together. There are six known human Ferlins: Dysferlin (Fer1L1), Otoferlin (Fer1L2), Myoferlin (Fer1L3), Fer1L4, Fer1L5, and Fer1L6. Defects in these genes can lead to a wide range of diseases including muscular dystrophy (dysferlin), deafness (otoferlin), and infertility (fer-1, fertilization factor-1). Structurally they have 6 tandem C2 domains, designated as (C2A-C2F) and a single C-terminal transmembrane domain, though there is a new study that disputes this and claims that there are actually 7 tandem C2 domains with another C2 domain inserted between C2D and C2E. In a subset of them (Dysferlin, Myoferlin, and Fer1) there is an additional conserved domain called DysF. C2 domains fold into an 8-standed beta-sandwich that can adopt 2 structural arrangements: Type I and Type II, distinguished by a circular permutation involving their N- and C-terminal beta strands. Many C2 domains are Ca2+-dependent membrane-targeting modules that bind a wide variety of substances including bind phospholipids, inositol polyphosphates, and intracellular proteins. Most C2 domain proteins are either signal transduction enzymes that contain a single C2 domain, such as protein kinase C, or membrane trafficking proteins which contain at least two C2 domains, such as synaptotagmin 1. However, there are a few exceptions to this including RIM isoforms and some splice variants of piccolo/aczonin and intersectin which only have a single C2 domain. C2 domains with a calcium binding region have negatively charged residues, primarily aspartates, that serve as ligands for calcium ions. This cd contains the fourth C2 repeat, C2D, and has a type-II topology. Pssm-ID: 175984 [Multi-domain] Cd Length: 135 Bit Score: 36.37 E-value: 8.03e-03
|
|||||||
Blast search parameters | ||||
|