Activity-dependent neuroprotector homeobox protein N-terminal; This entry represent the ...
391-859
3.68e-49
Activity-dependent neuroprotector homeobox protein N-terminal; This entry represent the N-terminal domain of Activity-dependent neuroprotector homeobox protein (ADNP, also known as Activity- dependent neuroprotective protein), which contains zinc finger motifs. It is involved in transcriptional regulation and it is vital for mammalian brain formation. In humans, de novo mutations result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome. This protein is also related to autophagy and the pathophysiology of schizophrenia.
The actual alignment was detected with superfamily member pfam19627:
Pssm-ID: 466132 [Multi-domain] Cd Length: 744 Bit Score: 187.36 E-value: 3.68e-49
Activity-dependent neuroprotector homeobox protein N-terminal; This entry represent the ...
391-859
3.68e-49
Activity-dependent neuroprotector homeobox protein N-terminal; This entry represent the N-terminal domain of Activity-dependent neuroprotector homeobox protein (ADNP, also known as Activity- dependent neuroprotective protein), which contains zinc finger motifs. It is involved in transcriptional regulation and it is vital for mammalian brain formation. In humans, de novo mutations result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome. This protein is also related to autophagy and the pathophysiology of schizophrenia.
Pssm-ID: 466132 [Multi-domain] Cd Length: 744 Bit Score: 187.36 E-value: 3.68e-49
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
176-539
6.91e-07
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.
Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 53.62 E-value: 6.91e-07
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; ...
259-576
1.86e-06
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. There are many SPs in vertebrates (9 SPs in humans and mice, 7 SPs in the chicken, and 11 SPs in teleost fish), but arthropods only have 3 SPs. One SP is clade SP1-4, which is expressed ubiquitously throughout development. SP1-4 belongs to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. This model represents the N-terminal domain of SP1-4 from arthropods.
Pssm-ID: 411778 [Multi-domain] Cd Length: 384 Bit Score: 51.18 E-value: 1.86e-06
Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic ...
919-975
6.99e-06
Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic developmental processes; may bind to DNA as monomers or as homo- and/or heterodimers, in a sequence-specific manner.
Pssm-ID: 238039 [Multi-domain] Cd Length: 59 Bit Score: 44.16 E-value: 6.99e-06
Solibacter uncharacterized C-terminal domain; This model describes a protein domain found in ...
340-542
2.86e-05
Solibacter uncharacterized C-terminal domain; This model describes a protein domain found in 90 proteins of Solibacter usitatus Ellin6076, nearly always as the C-terminal domain of a much larger protein. No homologs to this domain are detected outside of S. usitatus, a member of the Acidobacteria.
Pssm-ID: 274578 [Multi-domain] Cd Length: 215 Bit Score: 46.50 E-value: 2.86e-05
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; ...
135-476
1.01e-04
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. There are many SPs in vertebrates (9 SPs in humans and mice, 7 SPs in the chicken, and 11 SPs in teleost fish), but arthropods only have 3 SPs. One SP is clade SP1-4, which is expressed ubiquitously throughout development. SP1-4 belongs to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. This model represents the N-terminal domain of SP1-4 from arthropods.
Pssm-ID: 411778 [Multi-domain] Cd Length: 384 Bit Score: 45.79 E-value: 1.01e-04
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
281-397
9.88e-03
poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.
Pssm-ID: 130706 [Multi-domain] Cd Length: 612 Bit Score: 39.67 E-value: 9.88e-03
Activity-dependent neuroprotector homeobox protein N-terminal; This entry represent the ...
391-859
3.68e-49
Activity-dependent neuroprotector homeobox protein N-terminal; This entry represent the N-terminal domain of Activity-dependent neuroprotector homeobox protein (ADNP, also known as Activity- dependent neuroprotective protein), which contains zinc finger motifs. It is involved in transcriptional regulation and it is vital for mammalian brain formation. In humans, de novo mutations result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome. This protein is also related to autophagy and the pathophysiology of schizophrenia.
Pssm-ID: 466132 [Multi-domain] Cd Length: 744 Bit Score: 187.36 E-value: 3.68e-49
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
176-539
6.91e-07
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.
Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 53.62 E-value: 6.91e-07
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; ...
259-576
1.86e-06
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. There are many SPs in vertebrates (9 SPs in humans and mice, 7 SPs in the chicken, and 11 SPs in teleost fish), but arthropods only have 3 SPs. One SP is clade SP1-4, which is expressed ubiquitously throughout development. SP1-4 belongs to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. This model represents the N-terminal domain of SP1-4 from arthropods.
Pssm-ID: 411778 [Multi-domain] Cd Length: 384 Bit Score: 51.18 E-value: 1.86e-06
Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic ...
919-975
6.99e-06
Homeodomain; DNA binding domains involved in the transcriptional regulation of key eukaryotic developmental processes; may bind to DNA as monomers or as homo- and/or heterodimers, in a sequence-specific manner.
Pssm-ID: 238039 [Multi-domain] Cd Length: 59 Bit Score: 44.16 E-value: 6.99e-06
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
138-555
1.15e-05
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.
Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 49.38 E-value: 1.15e-05
Solibacter uncharacterized C-terminal domain; This model describes a protein domain found in ...
340-542
2.86e-05
Solibacter uncharacterized C-terminal domain; This model describes a protein domain found in 90 proteins of Solibacter usitatus Ellin6076, nearly always as the C-terminal domain of a much larger protein. No homologs to this domain are detected outside of S. usitatus, a member of the Acidobacteria.
Pssm-ID: 274578 [Multi-domain] Cd Length: 215 Bit Score: 46.50 E-value: 2.86e-05
Domain of unknown function (DUF4813); This family of proteins is functionally uncharacterized. ...
320-556
9.81e-05
Domain of unknown function (DUF4813); This family of proteins is functionally uncharacterized. This family of proteins is found in eukaryotes. Proteins in this family are typically between 345 and 672 amino acids in length.
Pssm-ID: 435117 [Multi-domain] Cd Length: 288 Bit Score: 45.52 E-value: 9.81e-05
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; ...
135-476
1.01e-04
N-terminal domain of transcription factor Specificity Protein (SP) 1-4 from arthropods; Specificity Proteins (SPs) are transcription factors that are involved in many cellular processes, including cell differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin remodeling. There are many SPs in vertebrates (9 SPs in humans and mice, 7 SPs in the chicken, and 11 SPs in teleost fish), but arthropods only have 3 SPs. One SP is clade SP1-4, which is expressed ubiquitously throughout development. SP1-4 belongs to a family of proteins, called the SP/Kruppel or Krueppel-like Factor (KLF) family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. SP factors preferentially bind GC boxes, while KLFs bind CACCC boxes. Another characteristic hallmark of SP factors is the presence of the Buttonhead (BTD) box CXCPXC, just N-terminal to the zinc fingers. The function of the BTD box is unknown, but it is thought to play an important physiological role. Another feature of most SP factors is the presence of a conserved amino acid stretch, the so-called SP box, located close to the N-terminus. This model represents the N-terminal domain of SP1-4 from arthropods.
Pssm-ID: 411778 [Multi-domain] Cd Length: 384 Bit Score: 45.79 E-value: 1.01e-04
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
139-309
6.35e-04
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.
Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 43.99 E-value: 6.35e-04
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian ...
122-409
6.17e-03
Atrophin-1 family; Atrophin-1 is the protein product of the dentatorubral-pallidoluysian atrophy (DRPLA) gene. DRPLA OMIM:125370 is a progressive neurodegenerative disorder. It is caused by the expansion of a CAG repeat in the DRPLA gene on chromosome 12p. This results in an extended polyglutamine region in atrophin-1, that is thought to confer toxicity to the protein, possibly through altering its interactions with other proteins. The expansion of a CAG repeat is also the underlying defect in six other neurodegenerative disorders, including Huntington's disease. One interaction of expanded polyglutamine repeats that is thought to be pathogenic is that with the short glutamine repeat in the transcriptional coactivator CREB binding protein, CBP. This interaction draws CBP away from its usual nuclear location to the expanded polyglutamine repeat protein aggregates that are characteriztic of the polyglutamine neurodegenerative disorders. This interferes with CBP-mediated transcription and causes cytotoxicity.
Pssm-ID: 460830 [Multi-domain] Cd Length: 991 Bit Score: 40.52 E-value: 6.17e-03
ARC105 or Med15 subunit of Mediator complex non-fungal; The approx. 70 residue Med15 domain of ...
188-586
6.18e-03
ARC105 or Med15 subunit of Mediator complex non-fungal; The approx. 70 residue Med15 domain of the ARC-Mediator co-activator is a three-helix bundle with marked similarity to the KIX domain. The sterol regulatory element binding protein (SREBP) family of transcription activators use the ARC105 subunit to activate target genes in the regulation of cholesterol and fatty acid homeostasis. In addition, Med15 is a critical transducer of gene activation signals that control early metazoan development.
Pssm-ID: 312941 [Multi-domain] Cd Length: 732 Bit Score: 40.38 E-value: 6.18e-03
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
281-397
9.88e-03
poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.
Pssm-ID: 130706 [Multi-domain] Cd Length: 612 Bit Score: 39.67 E-value: 9.88e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options