ionotropic receptor 40a, isoform F [Drosophila melanogaster]
type 2 periplasmic-binding domain-containing protein( domain architecture ID 229383)
type 2 periplasmic-binding protein (PBP2) is typically comprised of two globular subdomains connected by a flexible hinge; it binds its ligand in the cleft between these domains in a manner resembling a Venus flytrap; similar to the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating
List of domain hits
Name | Accession | Description | Interval | E-value | |||
Lig_chan-Glu_bd super family | cl48103 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
265-336 | 9.11e-08 | |||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan, pfam00060. The actual alignment was detected with superfamily member pfam10613: Pssm-ID: 463166 [Multi-domain] Cd Length: 111 Bit Score: 50.98 E-value: 9.11e-08
|
|||||||
Periplasmic_Binding_Protein_Type_2 super family | cl21456 | Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent ... |
496-637 | 2.20e-06 | |||
Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1 (PBP1), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The origin of PBP module can be traced across the distant phyla, including eukaryotes, archebacteria, and prokaryotes. The majority of PBP2 proteins are involved in the uptake of a variety of soluble substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. The substrate binding domain of the LysR transcriptional regulators and the oligopeptide-like transport systems also contain the type 2 periplasmic binding fold and thus they are significantly homologous to that of the PBP2; however, these two families are grouped into a separate hierarchy of the PBP2 superfamily due to the large number of protein sequences. The actual alignment was detected with superfamily member cd13685: Pssm-ID: 473866 [Multi-domain] Cd Length: 252 Bit Score: 49.49 E-value: 2.20e-06
|
|||||||
Periplasmic_Binding_Protein_Type_2 super family | cl21456 | Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent ... |
297-391 | 9.29e-03 | |||
Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1 (PBP1), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The origin of PBP module can be traced across the distant phyla, including eukaryotes, archebacteria, and prokaryotes. The majority of PBP2 proteins are involved in the uptake of a variety of soluble substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. The substrate binding domain of the LysR transcriptional regulators and the oligopeptide-like transport systems also contain the type 2 periplasmic binding fold and thus they are significantly homologous to that of the PBP2; however, these two families are grouped into a separate hierarchy of the PBP2 superfamily due to the large number of protein sequences. The actual alignment was detected with superfamily member cd13724: Pssm-ID: 473866 [Multi-domain] Cd Length: 333 Bit Score: 38.84 E-value: 9.29e-03
|
|||||||
Name | Accession | Description | Interval | E-value | |||||
Lig_chan-Glu_bd | pfam10613 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
265-336 | 9.11e-08 | |||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan, pfam00060. Pssm-ID: 463166 [Multi-domain] Cd Length: 111 Bit Score: 50.98 E-value: 9.11e-08
|
|||||||||
PBP2_iGluR_non_NMDA_like | cd13685 | The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate ... |
496-637 | 2.20e-06 | |||||
The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This subfamily represents the ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors including AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) receptors (GluR1-4), kainate receptors (GluR5-7 and KA1/2), and orphan receptors delta 1/2. iGluRs form tetrameric ligand-gated ion channels, which are concentrated at postsynaptic sites in excitatory synapses where they fulfill a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine#binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270403 [Multi-domain] Cd Length: 252 Bit Score: 49.49 E-value: 2.20e-06
|
|||||||||
PBP2_iGluR_non_NMDA_like | cd13685 | The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate ... |
216-338 | 1.46e-05 | |||||
The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This subfamily represents the ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors including AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) receptors (GluR1-4), kainate receptors (GluR5-7 and KA1/2), and orphan receptors delta 1/2. iGluRs form tetrameric ligand-gated ion channels, which are concentrated at postsynaptic sites in excitatory synapses where they fulfill a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine#binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270403 [Multi-domain] Cd Length: 252 Bit Score: 47.18 E-value: 1.46e-05
|
|||||||||
Lig_chan | pfam00060 | Ligand-gated ion channel; This family includes the four transmembrane regions of the ... |
436-694 | 2.38e-05 | |||||
Ligand-gated ion channel; This family includes the four transmembrane regions of the ionotropic glutamate receptors and NMDA receptors. Pssm-ID: 459656 [Multi-domain] Cd Length: 267 Bit Score: 46.53 E-value: 2.38e-05
|
|||||||||
Lig_chan-Glu_bd | smart00918 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
265-310 | 4.53e-03 | |||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan. Pssm-ID: 214911 [Multi-domain] Cd Length: 62 Bit Score: 36.07 E-value: 4.53e-03
|
|||||||||
PBP2_iGluR_kainate_KA1 | cd13724 | The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a ... |
297-391 | 9.29e-03 | |||||
The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This group contains the ligand-binding domain of the KA1 subunit of kainate receptor. While this ligand-binding domain is structurally homologous to the periplasmic binding fold type II superfamily, the N_terminal domain of kainate receptors belongs to the periplasmic-binding fold type I. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. Pssm-ID: 270442 [Multi-domain] Cd Length: 333 Bit Score: 38.84 E-value: 9.29e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||||
Lig_chan-Glu_bd | pfam10613 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
265-336 | 9.11e-08 | |||||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan, pfam00060. Pssm-ID: 463166 [Multi-domain] Cd Length: 111 Bit Score: 50.98 E-value: 9.11e-08
|
|||||||||||
PBP2_iGluR_non_NMDA_like | cd13685 | The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate ... |
496-637 | 2.20e-06 | |||||||
The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This subfamily represents the ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors including AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) receptors (GluR1-4), kainate receptors (GluR5-7 and KA1/2), and orphan receptors delta 1/2. iGluRs form tetrameric ligand-gated ion channels, which are concentrated at postsynaptic sites in excitatory synapses where they fulfill a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine#binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270403 [Multi-domain] Cd Length: 252 Bit Score: 49.49 E-value: 2.20e-06
|
|||||||||||
PBP2_iGluR_non_NMDA_like | cd13685 | The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate ... |
216-338 | 1.46e-05 | |||||||
The ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This subfamily represents the ligand-binding domain of non-NMDA (N-methyl-D-aspartate) type ionotropic glutamate receptors including AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid) receptors (GluR1-4), kainate receptors (GluR5-7 and KA1/2), and orphan receptors delta 1/2. iGluRs form tetrameric ligand-gated ion channels, which are concentrated at postsynaptic sites in excitatory synapses where they fulfill a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine#binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270403 [Multi-domain] Cd Length: 252 Bit Score: 47.18 E-value: 1.46e-05
|
|||||||||||
PBP2_iGluR_putative | cd13717 | The ligand-binding domain of putative ionotropic glutamate receptors, a member of the type 2 ... |
216-637 | 1.99e-05 | |||||||
The ligand-binding domain of putative ionotropic glutamate receptors, a member of the type 2 periplasmic binding fold protein superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270435 [Multi-domain] Cd Length: 360 Bit Score: 47.29 E-value: 1.99e-05
|
|||||||||||
Lig_chan | pfam00060 | Ligand-gated ion channel; This family includes the four transmembrane regions of the ... |
436-694 | 2.38e-05 | |||||||
Ligand-gated ion channel; This family includes the four transmembrane regions of the ionotropic glutamate receptors and NMDA receptors. Pssm-ID: 459656 [Multi-domain] Cd Length: 267 Bit Score: 46.53 E-value: 2.38e-05
|
|||||||||||
PBP2_iGluR_Kainate | cd13714 | Kainate receptor of the type 2 periplasmic-binding fold superfamily; This group contains ... |
265-338 | 7.10e-04 | |||||||
Kainate receptor of the type 2 periplasmic-binding fold superfamily; This group contains glutamate receptor domain GluR. These domains are found in the GluR proteins that have been shown to function as L-glutamate activated potassium channels, also known ionotropic glutamate receptors or iGluRs. In addition to two ligand binding core domains, iGluRs typically have a channel-like domain inserted in the middle of the GluR-like domain. Animal iGluRs mediate the ion flux in the synapses of the CNS and can be subdivided into several classes depending on the neurotransmitter specificity and ion conductance properties. Their plant homologs have been shown to function in light signal transduction and calcium homeostasis. The GluR proteins belong to the PBPII superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. Pssm-ID: 270432 [Multi-domain] Cd Length: 251 Bit Score: 42.14 E-value: 7.10e-04
|
|||||||||||
Lig_chan-Glu_bd | smart00918 | Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the ... |
265-310 | 4.53e-03 | |||||||
Ligated ion channel L-glutamate- and glycine-binding site; This region, sometimes called the S1 domain, is the luminal domain just upstream of the first, M1, transmembrane region of transmembrane ion-channel proteins, and it binds L-glutamate and glycine. It is found in association with Lig_chan. Pssm-ID: 214911 [Multi-domain] Cd Length: 62 Bit Score: 36.07 E-value: 4.53e-03
|
|||||||||||
PBP2_iGluR_ligand_binding | cd00998 | The ligand-binding domain of ionotropic glutamate receptor family, a member of the periplasmic ... |
265-338 | 8.16e-03 | |||||||
The ligand-binding domain of ionotropic glutamate receptor family, a member of the periplasmic binding protein type II superfamily; This subfamily represents the ligand binding of ionotropic glutamate receptors. iGluRs are heterotetrameric ion channels that comprises of three functionally distinct subtypes based on their pharmacology and structural similarities: AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid), NMDA (N-methyl-D-aspartate), and kainate receptors. All three types of channels are also activated by the physiological neurotransmitter, glutamate. iGluRs are concentrated at postsynaptic sites, where they exert a variety of different functions. While this ligand-binding domain of iGluRs is structurally homologous to the periplasmic binding fold type II superfamily, the N-terminal leucine/isoleucine/valine-binding protein (LIVBP)-like domain belongs to the periplasmic-binding fold type I. Pssm-ID: 270219 [Multi-domain] Cd Length: 243 Bit Score: 38.51 E-value: 8.16e-03
|
|||||||||||
PBP2_iGluR_kainate_KA1 | cd13724 | The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a ... |
297-391 | 9.29e-03 | |||||||
The ligand-binding domain of the kainate subtype KA1 of ionotropic glutamate receptors, a member of the type 2 periplasmic-binding fold protein superfamily; This group contains the ligand-binding domain of the KA1 subunit of kainate receptor. While this ligand-binding domain is structurally homologous to the periplasmic binding fold type II superfamily, the N_terminal domain of kainate receptors belongs to the periplasmic-binding fold type I. There are five types of kainate receptors, GluR5, GluR6, GluR7, KA1, and KA2, which are structurally similar to AMPA and NMDA subunits of ionotropic glutamate receptors. KA1 and KA2 subunits can only form functional receptors with one of the GluR5-7 subunits. Moreover, GluR5-7 can also form functional homomeric receptor channels activated by kainate and glutamate when expressed in heterologous systems. Kainate receptors are involved in excitatory neurotransmission by activating postsynaptic receptors and in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. Kainate receptors are closely related to AMAP receptors. In contrast of AMPA receptors, kainate receptors play only a minor role in signaling at synapses and their function is not well defined. Pssm-ID: 270442 [Multi-domain] Cd Length: 333 Bit Score: 38.84 E-value: 9.29e-03
|
|||||||||||
Blast search parameters | ||||
|