Tumour-associated protein; Membralin is evolutionarily highly conserved; though it seems to ...
34-376
2.80e-173
Tumour-associated protein; Membralin is evolutionarily highly conserved; though it seems to represent a unique protein family. The protein appears to contain several transmembrane regions. In humans it is expressed in certain cancers, particularly ovarian cancers. Membralin-like gene homologs have been identified in plants including grape, cotton and tomato.
:
Pssm-ID: 462877 Cd Length: 390 Bit Score: 495.44 E-value: 2.80e-173
Kruppel-like factor (KLF) 9, KLF13, KLF14, KLF16, and similar proteins; Kruppel/Krueppel-like ...
438-555
2.33e-05
Kruppel-like factor (KLF) 9, KLF13, KLF14, KLF16, and similar proteins; Kruppel/Krueppel-like transcription factors (KLFs) belong to a family of proteins, called the Specificity Protein (SP)/KLF family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. Members of the KLF family can act as activators or repressors of transcription depending on cell and promoter context. KLFs regulate various cellular functions, such as proliferation, differentiation, and apoptosis, as well as the development and homeostasis of several types of tissue. KLF9, KLF10, KLF11, KLF13, KLF14, and KLF16 share a conserved alpha-helical motif AA/VXXL that mediates their binding to Sin3A and their activities as transcriptional repressors. In addition to the C-terminal DNA-binding domain, each KLF also has a unique N-terminal activation/repression domain that confers specificity and allows it to bind specifically to a certain partner, leading to distinct activities in vivo. This model represents the related N-terminal domains of KLF9, KLF13, KLF14, KLF16, and similar proteins.
The actual alignment was detected with superfamily member cd21576:
Pssm-ID: 425361 [Multi-domain] Cd Length: 195 Bit Score: 45.58 E-value: 2.33e-05
Tumour-associated protein; Membralin is evolutionarily highly conserved; though it seems to ...
34-376
2.80e-173
Tumour-associated protein; Membralin is evolutionarily highly conserved; though it seems to represent a unique protein family. The protein appears to contain several transmembrane regions. In humans it is expressed in certain cancers, particularly ovarian cancers. Membralin-like gene homologs have been identified in plants including grape, cotton and tomato.
Pssm-ID: 462877 Cd Length: 390 Bit Score: 495.44 E-value: 2.80e-173
N-terminal domain of Kruppel-like factor 14; Kruppel-like factor 14 (KLF14; also known as ...
438-555
2.33e-05
N-terminal domain of Kruppel-like factor 14; Kruppel-like factor 14 (KLF14; also known as Krueppel-like factor 14 or basic transcription element-binding protein 5/BTEB5) is a protein that in humans is encoded by the KLF14 gene. KLF14 regulates the transcription of various genes, including TGFbetaRII (the type II receptor for TGFbeta). KLF14 is expressed in many tissues, lacks introns, and is subject to parent-specific expression. It also appears to be a master regulator of gene expression in adipose tissue. KLF14 is associated with coronary artery disease, hypercholesterolemia, and type 2 diabetes. KLF9, KLF10, KLF11, KLF13, KLF14, and KLF16 share a conserved alpha-helical motif AA/VXXL that mediates their binding to Sin3A and their activities as transcriptional repressors. KLF14 belongs to a family of proteins, called the Specificity Protein (SP)/KLF family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. Members of the KLF family can act as activators or repressors of transcription depending on cell and promoter context. KLFs regulate various cellular functions, such as proliferation, differentiation, and apoptosis, as well as the development and homeostasis of several types of tissue. In addition to the C-terminal DNA-binding domain, each KLF also has a unique N-terminal activation/repression domain that confers specificity and allows it to bind specifically to a certain partner, leading to distinct activities in vivo. This model represents the N-terminal domain of KLF14.
Pssm-ID: 409238 [Multi-domain] Cd Length: 195 Bit Score: 45.58 E-value: 2.33e-05
Tumour-associated protein; Membralin is evolutionarily highly conserved; though it seems to ...
34-376
2.80e-173
Tumour-associated protein; Membralin is evolutionarily highly conserved; though it seems to represent a unique protein family. The protein appears to contain several transmembrane regions. In humans it is expressed in certain cancers, particularly ovarian cancers. Membralin-like gene homologs have been identified in plants including grape, cotton and tomato.
Pssm-ID: 462877 Cd Length: 390 Bit Score: 495.44 E-value: 2.80e-173
N-terminal domain of Kruppel-like factor 14; Kruppel-like factor 14 (KLF14; also known as ...
438-555
2.33e-05
N-terminal domain of Kruppel-like factor 14; Kruppel-like factor 14 (KLF14; also known as Krueppel-like factor 14 or basic transcription element-binding protein 5/BTEB5) is a protein that in humans is encoded by the KLF14 gene. KLF14 regulates the transcription of various genes, including TGFbetaRII (the type II receptor for TGFbeta). KLF14 is expressed in many tissues, lacks introns, and is subject to parent-specific expression. It also appears to be a master regulator of gene expression in adipose tissue. KLF14 is associated with coronary artery disease, hypercholesterolemia, and type 2 diabetes. KLF9, KLF10, KLF11, KLF13, KLF14, and KLF16 share a conserved alpha-helical motif AA/VXXL that mediates their binding to Sin3A and their activities as transcriptional repressors. KLF14 belongs to a family of proteins, called the Specificity Protein (SP)/KLF family, characterized by a C-terminal DNA-binding domain of 81 amino acids consisting of three Kruppel-like C2H2 zinc fingers. These factors bind to a loose consensus motif, namely NNRCRCCYY (where N is any nucleotide; R is A/G, and Y is C/T), such as the recurring motifs in GC and GT boxes (5'-GGGGCGGGG-3' and 5-GGTGTGGGG-3') that are present in promoters and more distal regulatory elements of mammalian genes. Members of the KLF family can act as activators or repressors of transcription depending on cell and promoter context. KLFs regulate various cellular functions, such as proliferation, differentiation, and apoptosis, as well as the development and homeostasis of several types of tissue. In addition to the C-terminal DNA-binding domain, each KLF also has a unique N-terminal activation/repression domain that confers specificity and allows it to bind specifically to a certain partner, leading to distinct activities in vivo. This model represents the N-terminal domain of KLF14.
Pssm-ID: 409238 [Multi-domain] Cd Length: 195 Bit Score: 45.58 E-value: 2.33e-05
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options