pleckstrin homology domain-containing family G member 3 isoform X2 [Rattus norvegicus]
pleckstrin homology domain-containing family G protein( domain architecture ID 10457355)
pleckstrin homology (PH) domain-containing family G protein contains PH and RhoGEF domains and may function as a guanine nucleotide exchange factor; similar to Homo sapiens pleckstrin homology domain-containing family G members 1/2/3 (PLEKHG1/2/3) that are involved in the regulation of Rho protein signal transduction
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
PH_PLEKHG1_G2_G3 | cd13243 | Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) ... |
274-417 | 1.91e-67 | ||||
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain; PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. : Pssm-ID: 270063 [Multi-domain] Cd Length: 147 Bit Score: 223.77 E-value: 1.91e-67
|
||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
118-291 | 1.94e-51 | ||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. : Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 179.03 E-value: 1.94e-51
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
PH_PLEKHG1_G2_G3 | cd13243 | Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) ... |
274-417 | 1.91e-67 | |||||
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain; PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270063 [Multi-domain] Cd Length: 147 Bit Score: 223.77 E-value: 1.91e-67
|
|||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
118-291 | 1.94e-51 | |||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 179.03 E-value: 1.94e-51
|
|||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
118-292 | 4.73e-49 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 172.49 E-value: 4.73e-49
|
|||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
117-291 | 1.79e-46 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 165.16 E-value: 1.79e-46
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
336-414 | 8.05e-09 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 54.48 E-value: 8.05e-09
|
|||||||||
ROM1 | COG5422 | RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction ... |
118-371 | 1.44e-08 | |||||
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms]; Pssm-ID: 227709 [Multi-domain] Cd Length: 1175 Bit Score: 59.52 E-value: 1.44e-08
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
338-414 | 2.02e-06 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 47.56 E-value: 2.02e-06
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
PH_PLEKHG1_G2_G3 | cd13243 | Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) ... |
274-417 | 1.91e-67 | |||||
Pleckstrin homology domain-containing family G members 1, 2, and 3 pleckstrin homology (PH) domain; PLEKHG1 (also called ARHGEF41), PLEKHG2 (also called ARHGEF42 or CLG/common-site lymphoma/leukemia guanine nucleotide exchange factor2), and PLEKHG3 (also called ARHGEF43) have RhoGEF DH/double-homology domains in tandem with a PH domain which is involved in phospholipid binding. They function as a guanine nucleotide exchange factor (GEF) and are involved in the regulation of Rho protein signal transduction. Mutations in PLEKHG1 have been associated panic disorder (PD), an anxiety disorder characterized by panic attacks and anticipatory anxiety. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270063 [Multi-domain] Cd Length: 147 Bit Score: 223.77 E-value: 1.91e-67
|
|||||||||
RhoGEF | pfam00621 | RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called ... |
118-291 | 1.94e-51 | |||||
RhoGEF domain; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that pfam00169 domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 459876 [Multi-domain] Cd Length: 176 Bit Score: 179.03 E-value: 1.94e-51
|
|||||||||
RhoGEF | smart00325 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange ... |
118-292 | 4.73e-49 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Improved coverage. Pssm-ID: 214619 [Multi-domain] Cd Length: 180 Bit Score: 172.49 E-value: 4.73e-49
|
|||||||||
RhoGEF | cd00160 | Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous ... |
117-291 | 1.79e-46 | |||||
Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Also called Dbl-homologous (DH) domain. It appears that PH domains invariably occur C-terminal to RhoGEF/DH domains. Pssm-ID: 238091 [Multi-domain] Cd Length: 181 Bit Score: 165.16 E-value: 1.79e-46
|
|||||||||
PH_Collybistin_ASEF | cd01224 | Collybistin/APC-stimulated guanine nucleotide exchange factor pleckstrin homology (PH) domain; ... |
298-406 | 3.56e-11 | |||||
Collybistin/APC-stimulated guanine nucleotide exchange factor pleckstrin homology (PH) domain; Collybistin (also called PEM2) is homologous to the Dbl proteins ASEF (also called ARHGEF4/RhoGEF4) and SPATA13 (Spermatogenesis-associated protein 13; also called ASEF2). It activates CDC42 specifically and not any other Rho-family GTPases. Collybistin consists of an SH3 domain, followed by a RhoGEF/DH and PH domain. In Dbl proteins, the DH and PH domains catalyze the exchange of GDP for GTP in Rho GTPases, allowing them to signal to downstream effectors. It induces submembrane clustering of the receptor-associated peripheral membrane protein gephyrin, which is thought to form a scaffold underneath the postsynaptic membrane linking receptors to the cytoskeleton. It also acts as a tumor suppressor that links adenomatous polyposis coli (APC) protein, a negative regulator of the Wnt signaling pathway and promotes the phosphorylation and degradation of beta-catenin, to Cdc42. Autoinhibition of collybistin is accomplished by the binding of its SH3 domain with both the RhoGEF and PH domains to block access of Cdc42 to the GTPase-binding site. Inactivation promotes cancer progression. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269931 Cd Length: 138 Bit Score: 62.28 E-value: 3.56e-11
|
|||||||||
PH_puratrophin-1 | cd13242 | Puratrophin-1 pleckstrin homology (PH) domain; Puratrophin-1 (also called Purkinje cell ... |
317-416 | 9.76e-10 | |||||
Puratrophin-1 pleckstrin homology (PH) domain; Puratrophin-1 (also called Purkinje cell atrophy-associated protein 1 or PLEKHG4/Pleckstrin homology domain-containing family G member 4) contains a spectrin repeat, a RhoGEF (DH) domain, and a PH domain. It is thought to function in intracellular signaling and cytoskeleton dynamics at the Golgi. Puratrophin-1 is expressed in kidney, Leydig cells in the testis, epithelial cells in the prostate gland and Langerhans islet in the pancreas. A single nucleotide substitution in the puratrophin-1 gene were once thought to result in autosomal dominant cerebellar ataxia (ADCA), but now it has been demonstrated that this ataxia is a result of defects in the BEAN gene. Puratrophin contains a domain architecture similar to that of Dbl family members Dbs and Trio. Dbs is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a RhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. Trio plays an essential role in regulating the actin cytoskeleton during axonal guidance and branching. Trio is a multidomain signaling protein that contains two RhoGEF(DH)-PH domains in tandem. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270062 Cd Length: 136 Bit Score: 58.07 E-value: 9.76e-10
|
|||||||||
PH | cd00821 | Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ... |
338-410 | 2.23e-09 | |||||
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 275388 [Multi-domain] Cd Length: 92 Bit Score: 55.63 E-value: 2.23e-09
|
|||||||||
PH_Dbs | cd01227 | DBL's big sister protein pleckstrin homology (PH) domain; Dbs (also called MCF2-transforming ... |
318-417 | 3.22e-09 | |||||
DBL's big sister protein pleckstrin homology (PH) domain; Dbs (also called MCF2-transforming sequence-like protein 2) is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a rhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269934 [Multi-domain] Cd Length: 126 Bit Score: 56.44 E-value: 3.22e-09
|
|||||||||
PH | smart00233 | Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ... |
336-414 | 8.05e-09 | |||||
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. Pssm-ID: 214574 [Multi-domain] Cd Length: 102 Bit Score: 54.48 E-value: 8.05e-09
|
|||||||||
ROM1 | COG5422 | RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction ... |
118-371 | 1.44e-08 | |||||
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases [Signal transduction mechanisms]; Pssm-ID: 227709 [Multi-domain] Cd Length: 1175 Bit Score: 59.52 E-value: 1.44e-08
|
|||||||||
PH_Scd1 | cd13246 | Shape and Conjugation Deficiency 1 Pleckstrin homology (PH) domain; Fission yeast Scd1 is an ... |
294-352 | 1.08e-06 | |||||
Shape and Conjugation Deficiency 1 Pleckstrin homology (PH) domain; Fission yeast Scd1 is an exchange factor for Cdc42 and an effector of Ras1, the homolog of the human H-Ras. Scd2/Bem1 mediates Cdc42 activation by binding to Scd1/Cdc24 and to Cdc42. Ras1 regulates Scd1/Cdc24/Ral1, which is a putative guanine nucleotide exchange factor for Cdc42, a member of the Rho family of Ras-like proteins. Cdc42 then activates the Shk1/Orb2 protein kinase. Scd1 interacts with Klp5 and Klp6 kinesins to mediate cytokinesis. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270066 Cd Length: 148 Bit Score: 49.55 E-value: 1.08e-06
|
|||||||||
PH | pfam00169 | PH domain; PH stands for pleckstrin homology. |
338-414 | 2.02e-06 | |||||
PH domain; PH stands for pleckstrin homology. Pssm-ID: 459697 [Multi-domain] Cd Length: 105 Bit Score: 47.56 E-value: 2.02e-06
|
|||||||||
PH_Vav | cd01223 | Vav pleckstrin homology (PH) domain; Vav acts as a guanosine nucleotide exchange factor (GEF) ... |
307-406 | 3.22e-06 | |||||
Vav pleckstrin homology (PH) domain; Vav acts as a guanosine nucleotide exchange factor (GEF) for Rho/Rac proteins. They control processes including T cell activation, phagocytosis, and migration of cells. The Vav subgroup of Dbl GEFs consists of three family members (Vav1, Vav2, and Vav3) in mammals. Vav1 is preferentially expressed in the hematopoietic system, while Vav2 and Vav3 are described by broader expression patterns. Mammalian Vav proteins consist of a calponin homology (CH) domain, an acidic region, a catalytic Dbl homology (DH) domain, a PH domain, a zinc finger cysteine rich domain (C1/CRD), and an SH2 domain, flanked by two SH3 domains. In invertebrates such as Drosophila and C. elegans, Vav is missing the N-terminal SH3 domain. The DH domain is involved in RhoGTPase recognition and selectivity and stimulates the reorganization of the switch regions for GDP/GTP exchange. The PH domain is implicated in directing membrane localization, allosteric regulation of guanine nucleotide exchange activity, and as a phospholipid- dependent regulator of GEF activity. Vavs bind RhoGTPases including Rac1, RhoA, RhoG, and Cdc42, while other members of the GEF family are specific for a single RhoGTPase. This promiscuity is thought to be a result of its CRD. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes. Pssm-ID: 269930 Cd Length: 127 Bit Score: 47.63 E-value: 3.22e-06
|
|||||||||
PH2_Kalirin_Trio_p63RhoGEF | cd13241 | p63RhoGEF pleckstrin homology (PH) domain, repeat 2; The guanine nucleotide exchange factor ... |
318-417 | 1.84e-05 | |||||
p63RhoGEF pleckstrin homology (PH) domain, repeat 2; The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric G protein, Galphaq and linking Galphaq-coupled receptors (GPCRs) to the activation of RhoA. The Dbl(DH) and PH domains of p63RhoGEF interact with the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. Dbs is a guanine nucleotide exchange factor (GEF), which contains spectrin repeats, a rhoGEF (DH) domain and a PH domain. The Dbs PH domain participates in binding to both the Cdc42 and RhoA GTPases. Trio plays an essential role in regulating the actin cytoskeleton during axonal guidance and branching. Trio is a multidomain signaling protein that contains two RhoGEF(DH)-PH domains in tandem. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 270061 Cd Length: 140 Bit Score: 46.10 E-value: 1.84e-05
|
|||||||||
PH1_FARP1-like | cd01220 | FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin ... |
337-414 | 8.29e-04 | |||||
FERM, RhoGEF and pleckstrin domain-containing protein 1 and related proteins Pleckstrin Homology (PH) domain, repeat 1; Members here include FARP1 (also called Chondrocyte-derived ezrin-like protein; PH domain-containing family C member 2), FARP2 (also called FIR/FERM domain including RhoGEF; FGD1-related Cdc42-GEF/FRG), and FARP6 (also called Zinc finger FYVE domain-containing protein 24). They are members of the Dbl family guanine nucleotide exchange factors (GEFs) which are upstream positive regulators of Rho GTPases. Little is known about FARP1 and FARP6, though FARP1 has increased expression in differentiated chondrocytes. FARP2 is thought to regulate neurite remodeling by mediating the signaling pathways from membrane proteins to Rac. It is found in brain, lung, and testis, as well as embryonic hippocampal and cortical neurons. FARP1 and FARP2 are composed of a N-terminal FERM domain, a proline-rich (PR) domain, Dbl-homology (DH), and two C-terminal PH domains. FARP6 is composed of Dbl-homology (DH), and two C-terminal PH domains separated by a FYVE domain. This hierarchy contains the first PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes. Pssm-ID: 269928 Cd Length: 109 Bit Score: 40.38 E-value: 8.29e-04
|
|||||||||
Blast search parameters | ||||
|