regulator of nonsense transcripts 2 (UPF2) is involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC)
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
774-984
1.68e-44
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
:
Pssm-ID: 397130 Cd Length: 203 Bit Score: 160.22 E-value: 1.68e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
569-756
8.37e-39
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
:
Pssm-ID: 214713 Cd Length: 200 Bit Score: 143.66 E-value: 8.37e-39
Up-frameshift suppressor 2; Transcripts harbouring premature signals for translation ...
1086-1215
5.71e-38
Up-frameshift suppressor 2; Transcripts harbouring premature signals for translation termination are recognized and rapidly degraded by eukaryotic cells through a pathway known as nonsense-mediated mRNA decay. In Saccharomyces cerevisiae, three trans-acting factors (Upf1 to Upf3) are required for nonsense-mediated mRNA decay.
:
Pssm-ID: 461146 Cd Length: 133 Bit Score: 138.64 E-value: 5.71e-38
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
167-362
3.25e-25
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
:
Pssm-ID: 214713 Cd Length: 200 Bit Score: 104.36 E-value: 3.25e-25
Zinc-ribbon containing domain; This family consists of several hypothetical bacterial proteins ...
357-420
9.97e-03
Zinc-ribbon containing domain; This family consists of several hypothetical bacterial proteins of around 160 residues in length. Members of this family contain four highly conserved cysteine resides toward the C-terminal region of the protein.
The actual alignment was detected with superfamily member PRK11032:
Pssm-ID: 450347 Cd Length: 160 Bit Score: 38.05 E-value: 9.97e-03
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
774-984
1.68e-44
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
Pssm-ID: 397130 Cd Length: 203 Bit Score: 160.22 E-value: 1.68e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
771-984
4.10e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
Pssm-ID: 214713 Cd Length: 200 Bit Score: 158.68 E-value: 4.10e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
569-756
8.37e-39
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
Pssm-ID: 214713 Cd Length: 200 Bit Score: 143.66 E-value: 8.37e-39
Up-frameshift suppressor 2; Transcripts harbouring premature signals for translation ...
1086-1215
5.71e-38
Up-frameshift suppressor 2; Transcripts harbouring premature signals for translation termination are recognized and rapidly degraded by eukaryotic cells through a pathway known as nonsense-mediated mRNA decay. In Saccharomyces cerevisiae, three trans-acting factors (Upf1 to Upf3) are required for nonsense-mediated mRNA decay.
Pssm-ID: 461146 Cd Length: 133 Bit Score: 138.64 E-value: 5.71e-38
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
569-756
1.97e-25
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
Pssm-ID: 397130 Cd Length: 203 Bit Score: 105.14 E-value: 1.97e-25
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
167-362
3.25e-25
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
Pssm-ID: 214713 Cd Length: 200 Bit Score: 104.36 E-value: 3.25e-25
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
167-315
1.35e-06
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
Pssm-ID: 397130 Cd Length: 203 Bit Score: 50.44 E-value: 1.35e-06
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
774-984
1.68e-44
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
Pssm-ID: 397130 Cd Length: 203 Bit Score: 160.22 E-value: 1.68e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
771-984
4.10e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
Pssm-ID: 214713 Cd Length: 200 Bit Score: 158.68 E-value: 4.10e-44
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
569-756
8.37e-39
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
Pssm-ID: 214713 Cd Length: 200 Bit Score: 143.66 E-value: 8.37e-39
Up-frameshift suppressor 2; Transcripts harbouring premature signals for translation ...
1086-1215
5.71e-38
Up-frameshift suppressor 2; Transcripts harbouring premature signals for translation termination are recognized and rapidly degraded by eukaryotic cells through a pathway known as nonsense-mediated mRNA decay. In Saccharomyces cerevisiae, three trans-acting factors (Upf1 to Upf3) are required for nonsense-mediated mRNA decay.
Pssm-ID: 461146 Cd Length: 133 Bit Score: 138.64 E-value: 5.71e-38
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
569-756
1.97e-25
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
Pssm-ID: 397130 Cd Length: 203 Bit Score: 105.14 E-value: 1.97e-25
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The ...
167-362
3.25e-25
Middle domain of eukaryotic initiation factor 4G (eIF4G); Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA. Ponting (TiBS) "Novel eIF4G domain homologues (in press)
Pssm-ID: 214713 Cd Length: 200 Bit Score: 104.36 E-value: 3.25e-25
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). ...
167-315
1.35e-06
MIF4G domain; MIF4G is named after Middle domain of eukaryotic initiation factor 4G (eIF4G). Also occurs in NMD2p and CBP80. The domain is rich in alpha-helices and may contain multiple alpha-helical repeats. In eIF4G, this domain binds eIF4A, eIF3, RNA and DNA.
Pssm-ID: 397130 Cd Length: 203 Bit Score: 50.44 E-value: 1.35e-06
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options