Clinical Description
Although the phenotype of acid sphingomyelinase deficiency (ASMD) occurs along a continuum, individuals with the severe early-onset infantile neurovisceral phenotype (Niemann-Pick disease type A, or NPD-A) can often be distinguished from those with the intermediate chronic neurovisceral phenotype (NPD-A/B) and chronic visceral ASMD (Niemann-Pick disease type B, or NPD-B) based on clinical presentation. Enzyme replacement therapy (ERT) is currently FDA approved for the non-central nervous system manifestations of ASMD, regardless of type (see Management, Targeted Therapies). As more affected individuals are treated with ERT for longer periods of time, the natural history of ASMD is likely to change. ERT has been shown to improve many of the visceral and growth issues in affected individuals with NPD-A/B and NPD-B, but this therapy is not expected to have an impact on the central nervous system disease and neurocognitive issues.
Infantile Neurovisceral ASMD (NPD-A)
Feeding problems/growth. Feeding problems are severe, resulting in growth failure. Initially, feeding issues appear to result from early satiety because of gastric compression due to hepatosplenomegaly, but as the neurologic decline progresses, infants lose the ability to coordinate sucking and swallowing. As ERT currently does not treat the central nervous system findings, feeding issues due to neurologic decline is still predicted to be an issue, even for those who may be given ERT. Frequent vomiting can also contribute to insufficient caloric intake. Linear growth is within the normal range during the first year, whereas in untreated individuals weight attainment declines in the first year of life. ERT has been shown to improve growth in individuals with NPD-A/B and NPD-B, but has not been specifically studied in those with NPD-A.
Gastrointestinal manifestations (in addition to vomiting) include constipation and diarrhea. Some infants have abdominal discomfort and gassiness, which may result in irritability and sleep disturbance.
Liver manifestations. The first symptom in most children with NPD-A is hepatomegaly, which typically is noted by age three months [McGovern et al 2006]. Transaminases are persistently elevated. In untreated individuals, the hepatomegaly worsens with time; eventually, the liver becomes massive. Over time, infants with NPD-A who are untreated can exhibit evidence of liver failure, such as coagulopathy and ascites. ERT has been shown to improve hepatomegaly and reduce transaminase levels in affected individuals with NPD-A/B and NPD-B and has the potential to address these issues in those with NPD-A.
Splenic manifestations. Enlargement of the spleen is often noted by age three months. Blood counts can be abnormal, reflective of hypersplenism. ERT has been shown to improve splenomegaly in affected individuals with NPD-A/B and NPD-B and has the potential to address these issues in those with NPD-A.
Pulmonary disease. On chest radiograph, affected infants have evidence of interstitial lung disease caused by storage of sphingomyelin in the pulmonary macrophages. In untreated individuals, low pO2 on arterial blood gas determination is usually found later in the disease course. Frequent respiratory infections are common, and respiratory failure can be a cause of death. With ERT, pulmonary function may be improved, although this has not been specifically studied in individuals with NPD-A.
Ophthalmologic findings. Fundus examination reveals retinal changes at the time of diagnosis in most children. The accumulation of lipids in the retinal ganglion cells results in a white ring of lipid-laden neurons encircling the red, ganglion cell-free fovea and manifests as either a macular halo or a cherry-red macula, depending on the degree of opacity and diameter of the white annulus surrounding the fovea. Although a classic cherry-red spot may not be present early in the disease course, all untreated children with NPD-A develop one with time. There is not enough data on the use of ERT to know if this will change the development of cherry-red macula in individuals with NPD-A.
Neurologic findings. The neurologic examination at the time of presentation can be normal except for slight hypotonia. Hypotonia is progressive and deep tendon reflexes are lost with time. Cranial nerve function remains intact.
Psychomotor development does not progress beyond the 12-month level for any domain and skills are lost with disease progression [McGovern et al 2006]. Developmental age usually does not progress beyond age ten months for adaptive behavior, 12 months for expressive language, nine months for gross motor skills, and ten months for fine motor skills.
Neurologic deterioration is relentless and not significantly impacted by ERT. Most untreated children succumb before the third year. It is unclear what impact ERT may have on life expectancy due to improvements in the non-neurologic manifestations. The most common immediate cause of death is respiratory infection [Author, personal observation].
Chronic Neurovisceral ASMD (NPD-A/B)
Individuals with ASMD who survive early childhood but have progressive and/or clinically significant neurologic manifestations have chronic neurovisceral ASMD (NPD-A/B). Most individuals with NPD-A/B survive into adulthood, even when untreated. The extent of visceral organ involvement is variable, similar to NPD-B.
Liver dysfunction. In untreated individuals, the degree of hepatosplenomegaly ranges from mild to massive. Transaminases are often elevated, and some individuals have histologic abnormalities ranging from hepatic fibrosis to frank cirrhosis [Thurberg et al 2012]. Prior to ERT, liver failure was sometimes treated with liver transplantation [McGovern et al 2013]. However, ERT has been shown to improve hepatomegaly and reduce transaminase levels in affected individuals [Diaz et al 2022]. ERT is not expected to impact pre-existing liver fibrosis or cirrhosis.
Splenic involvement. In untreated individuals, hypersplenism leads to secondary thrombocytopenia and can cause acute abdominal pain. However, ERT has been shown to improve the splenomegaly and thrombocytopenia in affected individuals [Diaz et al 2022].
Pulmonary involvement. In untreated individuals, interstitial lung disease may result in oxygen dependence and severe limitations of activity. With ERT, pulmonary function may significantly improve. Out of nine affected children who were given ERT for 24 months, eight children experienced improvements in lung function to the point where they had no or mild impairment [Diaz et al 2022].
Neurologic signs. In individuals with NPD-A/B, the neurologic findings can include cerebellar signs and nystagmus [Obenberger et al 1999], extrapyramidal involvement, intellectual disability, and psychiatric disorders. In a review of 64 persons initially classified as having NPD-B, Wasserstein et al [2006] determined that 19 (30%) had neurologic abnormalities. Of the 19, 14 (22%) had minor and non-progressive findings and five (8%) had global and progressive findings (peripheral neuropathy, retinal abnormalities) with onset between ages two and seven years. The five with progressive findings had the p.Gln294Lys pathogenic variant. ERT does not improve or prevent neurologic issues in affected individuals.
Growth. Abnormal linear growth and delayed skeletal maturation are common in untreated children and adolescents with ASMD and can result in significant short stature in adulthood. In one study, the mean z scores for height and weight were -1.24 (29th centile) and -0.75 (34th centile), respectively, and skeletal age in children under age 18 years was delayed by an average of 2.5 years [Wasserstein et al 2003]. Short stature and low weight are correlated with large organ volumes, delayed bone age, and low serum insulin-like growth factor 1 (IGF-1) concentrations. However, improvements in both growth and skeletal age have been documented in children who received ERT [Diaz et al 2022].
Hyperlipidemia. In untreated individuals, low serum concentration of high-density lipoprotein cholesterol (HDL-C) is accompanied by hyperlipidemia characterized by hypertriglyceridemia and elevated serum concentration of low-density lipoprotein cholesterol (LDL-C). Lipid abnormalities are evident from the earliest age studied and contribute to cardiac disease. However, in those receiving ERT, lipid profiles improved [Diaz et al 2022].
Coarse facial features are present in a subset of individuals with NPD-A/B.
Osteopenia or osteoporosis may lead to an increase in fractures. ERT has been shown to improve bone mineral density, but the impact on fracture frequency in treated individuals is not yet known.
Chronic Visceral ASMD (NPD-B)
NPD-B, later in onset and milder in manifestations, is characterized in untreated individuals by hepatosplenomegaly, liver dysfunction, progressive hypersplenism, worsening atherogenic lipid profile, and gradual deterioration in pulmonary function [Wasserstein et al 2004, McGovern et al 2008], all of which have been shown to improve with the use of ERT [Diaz et al 2022]. Most untreated individuals with NPD-B survive into adulthood.
Liver dysfunction. Liver enlargement is common in untreated individuals. The degree of hepatosplenomegaly ranges from mild to massive, but can be improved through ERT. Many untreated individuals with NPD-B have elevated transaminases and some have histologic abnormalities ranging from hepatic fibrosis to frank cirrhosis [Thurberg et al 2012]. In rare instances, liver failure has required liver transplantation [McGovern et al 2013]. However, ERT has been shown to improve hepatomegaly and reduce transaminase levels in affected individuals [Diaz et al 2022], which are likely to reduce the risk of liver failure and the need for liver transplantation in the future.
Splenic involvement. Those with significant organomegaly have hypersplenism with secondary thrombocytopenia. Infarction of the spleen can cause acute abdominal pain. However, ERT has been shown to improve the splenomegaly and thrombocytopenia in affected individuals [Diaz et al 2022].
Pulmonary involvement is common in affected individuals of all ages [Minai et al 2000, Mendelson et al 2006]. In untreated individuals, clinical impairment ranges from none to oxygen dependence and severe limitations of activity. Most untreated affected individuals have evidence of interstitial lung disease on chest radiographs and thin-section CT. While most individuals have progressive gas exchange abnormalities, the extent of the radiographic findings may not correlate with impairment of pulmonary function. With ERT, pulmonary function, as measured by percent predicted diffusing capacity of the lung for carbon monoxide, significantly improved [Diaz et al 2022].
Calcified pulmonary nodules can also be seen in untreated individuals and were not specifically studied in those receiving ERT.
Ophthalmologic manifestations. Up to one third of individuals with NPD-B have a macular halo or a cherry-red macula. Most have no evidence of progressive neurologic disease; the presence of a macular halo or a cherry-red macula is not an absolute predictor of neurodegeneration [McGovern et al 2004b], and there do not appear to be any clinical consequences with respect to visual function. This aspect of ASMD was not studied in children who received ERT.
Growth. Abnormal linear growth and delayed skeletal maturation are common in untreated children and adolescents and can result in significant short stature in adulthood. In one study, the mean z scores for height and weight were -1.24 (29th centile) and -0.75 (34th centile), respectively, and skeletal age in children under age 18 years was delayed by an average of 2.5 years [Wasserstein et al 2003]. Short stature and low weight are correlated with large organ volumes, delayed bone age, and low serum IGF-1 concentrations. However, improvements in both growth and skeletal age have been documented in children who received ERT [Diaz et al 2022].
Hyperlipidemia. Low serum concentration of HDL-C is common in NPD-B [McGovern et al 2004a]. In most individuals the low serum concentration of HDL-C is accompanied by hyperlipidemia characterized by hypertriglyceridemia and elevated serum concentration of LDL-C. Lipid abnormalities are evident from the earliest age studied. However, in those receiving ERT, lipid profiles improved [Diaz et al 2022].
Cardiac disease. Early coronary artery disease, identified in some adults with NPD-B, is presumably related to the dyslipidemia. Some individuals have valvular heart disease due to sphingomyelin deposition. This specific end point has not been studied in individuals who have received ERT.
Osteopenia. Skeletal involvement is common in untreated individuals with NPD-B. In one study, lumbar spine z scores for children ranged from 0.061 to -4.879. Most untreated adults with NPD-B had osteopenia or osteoporosis at one or more sites according to the WHO classification of bone marrow density [Wasserstein et al 2013]. Pathologic fractures have been reported, and the impact of ERT is unknown. However, in children ERT did increase growth z scores and improved bone mineral density [Diaz et al 2022].
Other. Calcifications in organs other than the lungs, such as the adrenal glands, have been described. There are no known clinical consequences of these findings, and it is unknown if these findings will be impacted by ERT.
Pregnancy and childbirth. Pregnancy in a mildly affected untreated woman has been reported, and 17 pregnancies monitored in untreated women with a wide spectrum of clinical manifestations have been successful [MM McGovern, personal communication]. Most affected women, even those with significant pulmonary disease, can have normal pregnancies and childbirth. Hepatosplenomegaly does not usually pose a threat to fetal growth.
Genotype-Phenotype Correlations
In the United States about two thirds of newly diagnosed affected individuals have a unique genotype. Although no firm genotype-phenotype correlations exist for this disease, there are some pathogenic variants for which enough data has been generated to make some conclusions. For example, the p.Arg610del pathogenic variant appears to be neuroprotective; individuals with at least one copy of p.Arg610del will not develop neurologic manifestations and will have NPD-B disease. Individuals homozygous for p.Arg610del will have less severe disease than those with one copy in combination with a more severe variant [Wasserstein et al 2004]. In contrast to individuals with other pathogenic variants, individuals homozygous for the p.Arg610del pathogenic variant usually have normal height and weight, markedly less hepatosplenomegaly and bone age delay, and normal serum concentration of IGF-1. Lipid abnormalities occur with all genotypes, including homozygosity for the p.Arg610del pathogenic variant.
Some evidence suggests that the p.Leu139Pro, p.Ala198Pro, and p.Arg476Trp pathogenic variants also result in a less severe form of NPD-B.
The p.His423Tyr and p.Lys578Asn pathogenic variants, found most commonly in individuals from Saudi Arabia, lead to an early-onset severe form of the disease that is most consistent with the intermediate chronic neurovisceral phenotype (NPD-A/B) [Simonaro et al 2002].
The p.Gln294Lys pathogenic variant, associated with intermediate phenotypes with later-onset neuronopathic disease (NPD-A/B), appears to be relatively common in individuals of Czech and Slovak heritage [Pavlů-Pereira et al 2005].
Homozygosity or compound heterozygosity for some combination of the common SMPD1 pathogenic variants observed in individuals with NPD-A predicts the severe infantile neurovisceral phenotype. For example, any combination of the p.Arg498Leu, p.Leu304Pro, or p.Phe333SerfsTer52 variants results in NPD-A.