Molecular Genetic Pathogenesis
Sialuria. The basic metabolic defect in sialuria is failed allosteric feedback inhibition of the bifunctional UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase (EC 5.1.3.14) / N-acetylmannosamine (ManNAc) kinase (EC 2.7.1.60) (GNE/MNK), rate-limiting enzyme in the biosynthesis of sialic acid (Neu5Ac). The biologic inhibitory substance, CMP-Neu5Ac, the downstream product in this biosynthetic pathway, is formed in the cell nucleus per activation of Neu5Ac by CTP catalyzed by CMP-Neu5Ac synthase. It is subsequently transported into the Golgi apparatus assisted by a specific Golgi membrane protein. It serves in that location as a substrate for different sialyltransferases [Reinke et al 2009]. Feedback inhibition fails when CMP-sialic acid (CMP-neu5Ac) cannot bind to the small mutated allosteric site in GNE/MNK, itself a soluble protein of 722 amino acids found in the cytoplasm, mainly in the Golgi region, and also in the cell nucleus [Krause et al 2005] The allosteric site is still incompletely defined but comprises the consecutive amino acids 263 through 266 in the epimerase functional domain.
In each person with sialuria, the GNE pathogenic variant was found to be a missense variant in one of the two nearly adjacent codons in exon 5 (Table 2). In each person, it was found only in the heterozygous state [Ferreira et al 1999, Seppala et al 1999, Aula & Gahl 2001, Enns et al 2001, Leroy et al 2001, Huizing & Krasnewich 2009]. The detection of this molecular defect provided the initial information that identified the allosteric site in the GNE/MNK enzyme and explains the main aspects of the pathogenesis of sialuria. Moreover, the finding that the regulatory pathogenic variant in all persons with sialuria is heterozygous establishes the autosomal dominant mode of inheritance.
The lack of feedback inhibition results in highly excessive production of free sialic acid and in its very elevated concentrations in the cellular cytoplasm, interstitial tissues, and body fluids, such as urine.
Defective allosteric inhibition is not an exceptional cause of human metabolic disease. It has been shown recently also for the glutamate dehydrogenase gene in infants with hyperinsulinism and hyperammonemia (see Familial Hyperinsulinism).
Gene structure.
GNE consists of 14 exons, 13 of which are located closely together, whereas the recently discovered additional exon of 90 base pairs, named A1, resides 20 kb upstream of exon 1 as outlined in the references in Reinke et al [2009]. Four different mRNA splice variants are transcribed from GNE, resulting from alternative splicing of the exons A1, 1, and 2. Exon 1 is a non-coding exon. Hence, two of the splice variants encode a protein of 722 amino acids, hGNE1, as reported for the originally characterized GNE/MNK protein and referred to in most molecular biology studies.
Pathogenic variants. In all persons with sialuria, one of three single missense variants, p.Arg263Leu, p.Arg266Gln, or p.Arg266Trp, was found in only a single GNE allele (located in exon 5 and the epimerase domain of GNE/MNK) and associated with highly excessive urinary excretion of free sialic acid. This strongly suggested that the corresponding group of amino acids represents the allosteric site of the enzyme for retroinhibition by CMP-Neu5Ac acid binding [Seppala et al 1999]. In contrast to the sialic acid storage disorders, the clinical consequence has been mild and not associated with lysosomal retention of free sialic acid or by other histologically demonstrable cellular damage. The finding in the symptom-free mother of one of the probands confirms the mild clinical effect and proves the autosomal dominant inheritance of the disorder.
Note: Homozygous or compound heterozygous pathogenic variants in either the epimerase domain or the kinase domain are associated with adult-onset autosomal recessive hereditary inclusion body myopathy (hIBM). See Genetically Related Disorders.
Table 2.
Selected GNE Pathogenic Variants
View in own window
DNA Nucleotide Change | Predicted Protein Change | Reference Sequences |
---|
c.788G>T | p.Arg263Leu | NM_005476.4 1 NP_005467.1 |
c.797G>A | p.Arg266Gln |
c. 796C>T | p.Arg266Trp |
Note on variant classification: Variants listed in the table have been provided by the author. GeneReviews staff have not independently verified the classification of variants.
Note on nomenclature: GeneReviews follows the standard naming conventions of the Human Genome Variation Society (varnomen.hgvs.org). See Quick Reference for an explanation of nomenclature.
- 1.
The codon numbers correspond to reference sequence NP_005467.1 (sometimes referred to isoform 2), which contains a different 5' terminal exon compared to transcript variant 1, resulting in translation initiation from an in-frame downstream AUG and an isoform (2) with a shorter N-terminus compared to isoform 1. See Entrez Gene www.ncbi.nlm.nih.gov/gene/10020.
Normal gene product. Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase (GNE) (EC 5.1.3.14)/ N-acetylmannosamine (ManNAc) kinase (MNK) (EC 2.7.1.60), a protein of 722 amino acids is a bifunctional enzyme that catalyzes the first rate-limiting step and the second step in the biosynthetic pathway of sialic acid [Seppala et al 1999, Aula & Gahl 2001, Huizing & Krasnewich 2009]. The first of these steps is inhibited by feedback from CMP-neu5Ac. The epimerase activity domain is found in the amino-terminal portion of the protein (amino acids 1 to ~378) and the kinase domain is found in the carboxy-terminal half (amino acids ~410 to 722) [Seppala et al 1999, Huizing 2005]. The allosteric site resides in exon 5 within the epimerase domain. The active site in either enzyme domain is still to be determined. GNE/MNK is a major determinant of cell surface glycoconjugate sialylation and a critical regulator of the function of specific cell-surface adhesion molecules. Bound N-acetyl-neuraminic acid (NANA) is widely distributed in normal tissues and is a constituent of glycoproteins and complex lipids such as gangliosides. In N-linked glycoproteins, NANA is consistently the terminal sugar in the oligosaccharide tree [Huizing & Krasnewich 2009].
Human GNE (GNE/MNK) exists in three different isoforms – hGNE1, hGNE2, and hGNE3 – the latter two possessing extended or deleted N-terminal regions, respectively. The isoform hGNE1 is ubiquitously expressed, most intensively in liver and placenta. Lower concentrations are detectable in muscle, brain, kidney, and pancreas [Reinke et al 2009 and references therein].
It is of interest that as a monomer GNE/MNK has no catalytic activity. It requires di- and even multimerization of the nascent polypeptides in order to become fully active as a bifunctional enzyme [Huizing & Krasnewich 2009, Reinke et al 2009].
Abnormal gene product. Pathogenic variants appear to reside exclusively in the short stretch of consecutive nucleotides in GNE that encodes the amino acids 263 to 266, which have an important role in the allosteric site of the gene product, UDP-N-acetylglucosamine 2-epimerase/N-acetyl mannosamine kinase (GNE/MNK). Of note, the borders of the putative allosteric site have not yet been determined [Huizing 2005].
The activity of the bifunctional and rate-limiting GNE enzyme is normal in sialuria fibroblasts, but no longer subject to retro-inhibition by the end-product CMP-sialic acid, when one and only one of the two GNE alleles is a pathogenic missense variant in the putative allosteric site in and probably near codons 263 and 266. Hence, there is significant and steady overproduction and vastly excessive urinary excretion of free sialic acid (neu5Ac).
The apparently rare individuals with sialuria have a clinically mild disorder. Nevertheless, a pathogenic variant resulting in an allosteric autosomal dominant metabolic defect is of considerable importance in the study of the various physiologic roles of free sialic acid and of sialylation in tissues. Moreover, the metabolic trait has been shown to be important in the production of biologic molecules with therapeutic potential and in testing the feasibility of silencing mutation effects by RNA interference. Click here for additional information.