Description
TNNI3 Arg162Gln has been identified in multiple HCM probands (Walsh R, et al., 2017; Cecconi M, et al., 2016; Mouton JM, et al., 2015; Coppini R, et la., 2014; Kapplinger JD, et al., 2014; Rani DS, et al., 2012; Bos JM, et al., 2006; Mogensen J, et al., 2004; Van Driest SL, et al., 2003) and has been found to segregate with disease in 2 HCM families (Rani DS, et al., 2012; Mogensen J, et al., 2004). The variant is present at a low frequency in the Exome Aggregation Consortium dataset (MAF=0.00003; http://exac.broadinstitute.org/). We have identified this variant in 3 HCM probands (Burns et al., 2017), one of their families have been previously described (Ingles J, et al., 2005; Doolan A, et al., 2005). Computational tools CADD, MutationTaster, and PolyPhen-2 predict this variant to have a deleterious effect, however SIFT predicts this variant to be "tolerated". A mammalian two-hybrid system has shown that this missense change decreases troponin T and troponin C interaction (Doolan A, et al., 2005), whereas crystal structure modelling suggests that the Arg162Gln affects troponin C stability (Ramachandran G, et al., 2013). In summary, the TNNI3 Arg162Gln is a rare variant which has been described in multiple HCM probands around the world and has been found to segregate strongly in at least 2 families, therefore we classify this variant as "pathogenic".
# | Sample | Method | Observation |
---|
Origin | Affected | Number tested | Tissue | Purpose | Method | Individuals | Allele frequency | Families | Co-occurrences |
---|
1 | germline | yes | not provided | not provided | not provided | | not provided | not provided | not provided | not provided |