U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 7

1.

Control of glycolytic enzyme fluxes in Saccharomyces cerevisiae

(Submitter supplied) Metabolic fluxes may be regulated "hierarchically," e.g., by changes of gene expression that adjust enzyme capacities (V(max)) and/or "metabolically" by interactions of enzymes with substrates, products, or allosteric effectors. In the present study, a method is developed to dissect the hierarchical regulation into contributions by transcription, translation, protein degradation, and posttranslational modification. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
9 Samples
Download data: CEL, EXP
Series
Accession:
GSE9232
ID:
200009232
2.

A Saccharomyces cerevisiae strain with a minimal complement of glycolytic genes reveals strong redundancies in central metabolism

(Submitter supplied) As a result of ancestral whole genome and small-scale duplication events, the genome of Saccharomyces cerevisiae’s, and of many eukaryotes, still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17342
4 Samples
Download data: TXT
Series
Accession:
GSE63884
ID:
200063884
3.

Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae

(Submitter supplied) Prolonged cultivation of Saccharomyces cerevisiae in aerobic, glucose-limited chemostat cultures (dilution rate, 0·10 h–1) resulted in a progressive decrease of the residual glucose concentration (from 20 to 8 mg l–1 after 200 generations). This increase in the affinity for glucose was accompanied by a fivefold decrease of fermentative capacity, and changes in cellular morphology. These phenotypic changes were retained when single-cell isolates from prolonged cultures were used to inoculate fresh chemostat cultures, indicating that genetic changes were involved. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
6 Samples
Download data: CEL, EXP
Series
Accession:
GSE8898
ID:
200008898
4.

DynaMO, a package identifying transcription factor binding sites in dynamical ChIPSeq/RNASeq datasets, identifies transcription factors driving yeast ultradian and mammalian circadian cycles

(Submitter supplied) Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. We present a computational method, dynamic motif occupancy (DynaMO), which exploits random forest modeling and clustering based enrichment analysis. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17342
30 Samples
Download data: FPKM_TRACKING, TXT
Series
Accession:
GSE72263
ID:
200072263
5.

Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states

(Submitter supplied) Cultivation methods used to investigate microbial calorie restriction often result in carbon and energy starvation. This study aims to dissect cellular responses to calorie restriction and starvation in Saccharomyces cerevisiae by using retentostat cultivation. In retentostats, cells are continuously supplied with a small, constant carbon and energy supply, sufficient for maintenance of cellular viability and integrity but insufficient for growth. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL90
10 Samples
Download data: CEL
Series
Accession:
GSE22602
ID:
200022602
6.

Transcriptional control of amino acid biosynthesis

(Submitter supplied) We transcriptional profiled four transcription factor knockout strains in S288C background growing in YNB media + 2% glucose to understand the link between mRNA levels and our measured C13 fluxes of amino acid biosynthesis. We conducted this analysis as a follow up to our work on the Gcn4p transcription factor. Keywords: genetic modification
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL5043
4 Samples
Download data: GPR
Series
Accession:
GSE7369
ID:
200007369
7.

Gcn4p-mediated transcriptional stress response

(Submitter supplied) The transcriptional data from an integrative analysis of transcriptional and metabolic stress responses that provides a more complete understanding of the mechanisms by which genetic regulatory circuits mediate metabolic phenotype. Keywords: stress response, genetic modification
Organism:
Saccharomyces cerevisiae; Schizosaccharomyces pombe
Type:
Expression profiling by array
Platform:
GPL2529
6 Samples
Download data: CEL
Series
Accession:
GSE4709
ID:
200004709
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_679c870bc83ed746357365c7|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center