U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 17

1.

Identification of Erythroid-Enriched Gene Expression in the Mouse Embryonic Yolk Sac using Microdissected Cells

(Submitter supplied) Primitive erythropoiesis in the mouse yolk sac is followed by definitive erythropoiesis resulting in adult erythrocytes. In comparison to definitive erythropoiesis little is known about the genes that control the embryonic erythroid program. The purpose of this study was to generate a profile of mouse embryonic yolk sac erythroid cells and identify novel regulatory genes differentially expressed in erythroid compared to non-erythroid (epithelial cells). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Dataset:
GDS3405
Platform:
GPL8321
8 Samples
Download data: CEL
Series
Accession:
GSE10002
ID:
200010002
2.
Full record GDS3405

Embryonic erythroid precursors

Analysis of primitive erythroid precursors and epithelial cells isolated from frozen sections of the embryonic day 9.5 yolk sac. Results provide insight into the molecular mechanisms underlying embryonic erythropoiesis.
Organism:
Mus musculus
Type:
Expression profiling by array, count, 2 cell type sets
Platform:
GPL8321
Series:
GSE10002
8 Samples
Download data: CEL
DataSet
Accession:
GDS3405
ID:
3405
3.

Identification of differentially expressed genes in runx1-/- primitive erythroid

(Submitter supplied) Targeted disruption of the Runx1/ AML1 gene in mice has demonstrated that it is required for the emergence of definitive hematopoietic cells, but that it is not essential for the formation of primitive erythrocytes. These findings led to the conclusion that Runx1 is a stage-specific transcription factor acting only during definitive hematopoiesis. However, the zebrafish and Xenopus homologues of Runx1 have been shown to play roles in primitive hematopoiesis, suggesting that mouse Runx1 might also be involved in the development of primitive lineages. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL922
1 Sample
Download data: TXT
Series
Accession:
GSE10348
ID:
200010348
4.

A Positive Regulatory Feedback Loop Between EKLF/ KLF1 and TAL1/SCL Sustaining the Erythropoiesis

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL13412 GPL1261
10 Samples
Download data: CEL, CHP, PAIR
Series
Accession:
GSE171289
ID:
200171289
5.

ChIP-Chip data from WT E14.5 fetal liver

(Submitter supplied) The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf-/-) mouse embryos, we have identified the pathways and direct target genes activated or repressed by EKLF. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL13412
2 Samples
Download data: PAIR
Series
Accession:
GSE171201
ID:
200171201
6.

Microarray expression level comparison between WT and KO fetal liver cells

(Submitter supplied) The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf-/-) mouse embryos, we have identified the pathways and direct target genes activated or repressed by EKLF. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
8 Samples
Download data: CEL, CHP
Series
Accession:
GSE171200
ID:
200171200
7.

A novel role for Lyl1 in primitive erythropoiesis

(Submitter supplied) Stem Cell Leukemia (Scl or Tal1) and Lymphoblastic Leukemia 1 (Lyl1) are highly related members of the basic helix-loop-helix (bHLH) family of transcription factors that are co- expressed in hematopoietic stem cells and the erythro-megakaryocytic lineages. Previous studies suggest that Scl is essential for hematopoietic development including primitive erythropoiesis. However, analysis of single-cell RNA-sequencing data of early embryos showed that primitive erythroid cells express both Scl and Lyl1. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21626
12 Samples
Download data: TXT
Series
Accession:
GSE103789
ID:
200103789
8.

The role of Ldb1 in hemangioblast development: genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL1261 GPL13112
16 Samples
Download data: CEL
Series
Accession:
GSE43044
ID:
200043044
9.

The role of Ldb1 in hemangioblast development: genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis (Affymetrix)

(Submitter supplied) The first site exhibiting hematopoietic activity in mammalian development is the yolk sac blood island, which originates from the hemangioblast. Here we performed differentiation assays, as well as genome-wide molecular and functional studies in BL-CFCs to gain insight into the function of the essential Ldb1 factor in early primitive hematopoietic development. We show that the previously reported lack of yolk sac hematopoiesis and vascular development in Ldb1-/- mouse result from a decreased number of hemangioblasts and a block in their ability to differentiate into erythroid and endothelial progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE43042
ID:
200043042
10.

The role of Ldb1 in hemangioblast development: genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis (sequencing)

(Submitter supplied) The first site exhibiting hematopoietic activity in mammalian development is the yolk sac blood island, which originates from the hemangioblast. Here we performed differentiation assays, as well as genome-wide molecular and functional studies in BL-CFCs to gain insight into the function of the essential Ldb1 factor in early primitive hematopoietic development. We show that the previously reported lack of yolk sac hematopoiesis and vascular development in Ldb1-/- mouse result from a decreased number of hemangioblasts and a block in their ability to differentiate into erythroid and endothelial progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
10 Samples
Download data: TXT
Series
Accession:
GSE43041
ID:
200043041
11.

Mechanisms of terminal erythroid differentiation defect in EKLF-deficient mice

(Submitter supplied) EKLF is a Krüppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf -/-) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differention in Eklf -/- embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild type and Eklf -/- early erythroid progenitor cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE36618
ID:
200036618
12.

High throughput sequencing of RNAPII-Ser5P ChIP DNA

(Submitter supplied) The discovery of interchromosomal interactions in higher eukaryotes points to a functional interplay between genome architecture and gene expression, challenging the view of transcription as a one-dimensional process. However, the extent of interchromosomal interactions and the underlying mechanisms are unknown. Here we present the first genome-wide analysis of transcriptional interactions using the mouse globin genes in erythroid tissues. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9522
1 Sample
Download data: FNA, TXT
Series
Accession:
GSE18873
ID:
200018873
13.

Dynamic transcriptomes during human erythroid differentiation and development

(Submitter supplied) To explore the mechanisms controlling erythroid differentiation and development in human, we analyzed the genome-wide transcription dynamics that occurs during the differentiation of HESCs into the erythroid lineage and development of embryonic to adult erythropoiesis using high throughput sequencing technology. Undifferentiated HESCs as well as erythroid cells at three developmental stages-ESER (embryonic stage), FLER (fetal stage) and PBER (adult stage)-were analyzed. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL9442
4 Samples
Download data: WIG
Series
Accession:
GSE32991
ID:
200032991
14.

Gene expression in erythroid cell differentiation

(Submitter supplied) Human mononuclear cells were cultured in 2 phases. In the 1st phase the culture medium contained cyclosporine A the 2nd phase contained SCF and erythropoietin. Cells were collected at 3 stages of differentiation; on day 6, 10, 12 and represented early erythroblasts, medium stage and normoblasts. Keywords: time course
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL571
6 Samples
Download data: CEL, CHP
Series
Accession:
GSE12407
ID:
200012407
15.

Gene expression profiling in Vav-Etv2 KSL and Granulocyte hematopoietic cells

(Submitter supplied) Etv2 transgene was expressed from ROSA26 locus by removing floxed STOP cassette by Vav Cre transgene. KSL or Mac1+/Gr1+ cells were sorted from control or Vav-Etv2 bone marrow and compared for gene expression in duplicate. This study will reveal the effect of Etv2 transgene in adult hematopoietic cells. The effect of Etv2 overexpression in relevant mouse tissue will be important to understand its effect in comparison with in ES cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10787
8 Samples
Download data: TXT
Series
Accession:
GSE36731
ID:
200036731
16.

Gene expression profiling in Tie-2-Etv2 endothelial and/or hematopoietic precursors

(Submitter supplied) Etv2 transgene was expressed from ROSA26 locus by removing floxed STOP cassette by Tie-2 Cre transgene. VE-Cad+/CD45= or VE-Cad+/CD45+ cells were sorted from control or tie-2-Etv2 E11.5 embryos (YS;yolk sac and Emb;embryo proper)and compared for gene expression in duplicate.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL10787
16 Samples
Download data: TXT
Series
Accession:
GSE36516
ID:
200036516
17.

SOP/pI vs. Epithelial cells

(Submitter supplied) RNA profiling of Drosophila sensory organs precursor cells (SOP/pI) compared with neighbouring epithelial cells.
Organism:
Drosophila melanogaster
Type:
Expression profiling by array
Platform:
GPL5112
2 Samples
Download data
Series
Accession:
GSE18615
ID:
200018615
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_675cad915b6aa014c15167e0|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center