U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

ChIP-exo analysis of the DNA-binding sites of the yeast transcription factor Yfl052w

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL13821 GPL10577
4 Samples
Download data: TXT
Series
Accession:
GSE57902
ID:
200057902
2.

ChIP-exo analysis of the DNA-binding sites of the yeast transcription factor Yfl052w sequenced by SOLiD

(Submitter supplied) We determined DNA-binding sites of the yeast transcription factor Yfl052w by ChIP-exo. Cells were grown in the YP media containing palatinose. Yfl052w was tagged with HA tag and anti-HA antibody was used for the immunoprecipitation.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10577
2 Samples
Download data: TXT
Series
Accession:
GSE57901
ID:
200057901
3.

ChIP-exo analysis of the DNA-binding sites of the yeast transcription factor Yfl052w sequenced by Illumina

(Submitter supplied) We determined DNA-binding sites of the yeast transcription factor Yfl052w by ChIP-exo. Cells were grown in the YP media containing palatinose. Yfl052w was tagged with HA tag and anti-HA antibody was used for the immunoprecipitation.
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
2 Samples
Download data: TXT
Series
Accession:
GSE57900
ID:
200057900
4.

Genome-wide mapping of the binding sites of transcription factor Cst6p in Saccharomyces cerevisiae

(Submitter supplied) The transcription factor Cst6p in Saccharomyces cerevisiae has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and the mechanisms for its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p with ChIP-exo at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol, but hardly binds to the genome on glucose. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19756
4 Samples
Download data: XLSX
Series
Accession:
GSE76154
ID:
200076154
5.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Nakaseomyces glabratus; Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL22622 GPL13821
62 Samples
Download data: WIG
Series
Accession:
GSE97801
ID:
200097801
6.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Cgla RNA-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Nakaseomyces glabratus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL22622
8 Samples
Download data: CSV
Series
Accession:
GSE97800
ID:
200097800
7.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Scer RNA-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13821
36 Samples
Download data: CSV
Series
Accession:
GSE97799
ID:
200097799
8.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Cgla ChIP-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Nakaseomyces glabratus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL22622
9 Samples
Download data: WIG
Series
Accession:
GSE97798
ID:
200097798
9.

Evolution of Reduced Co-Activator Dependence Led to Target Expansion of a Starvation Response Pathway [Scer ChIP-seq]

(Submitter supplied) In S. cerevisiae, the phosphate starvation (PHO) responsive transcription factors Pho4 and Pho2 are jointly required for induction of phosphate response genes and survival in phosphate starvation conditions. In the related human commensal and pathogen C. glabrata, Pho4 is required but Pho2 is dispensable for survival in phosphate-limited conditions and is only partially required for inducing the phosphate response genes. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13821
9 Samples
Download data: WIG
Series
Accession:
GSE97797
ID:
200097797
10.

Genetic Analysis of Variation in Transcription Factor Binding in Yeast

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL9134 GPL9825
222 Samples
Download data: TXT
Series
Accession:
GSE19636
ID:
200019636
11.

Genome-wide Ste12-binding site mapping in MATa segregants of YJM789 x S96 cross

(Submitter supplied) In this study, we mapped for the first time differences in transcription binding among individuals and elucidated the genetic basis of such variation. Whole-genome Ste12 binding profiles were determined using ChIP-Seq in pheromone-treated cells of 43 segregants of a cross between two highly diverged yeast strains, YJM789 and S288c as well as the parental lines. We identified extensive Ste12 binding variation among individuals and mapped underlying cis- and trans- acting loci responsible for such variation. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9134
174 Samples
Download data: TXT
Series
Accession:
GSE19635
ID:
200019635
12.

Gene Expression of MATa yeast segregants (YJM789 X S96) after alpha factor treatment

(Submitter supplied) In this study, we mapped for the first time differences in transcription binding among individuals and elucidated the genetic basis of such variation. Whole-genome Ste12 binding profiles were determined using ChIP-Seq in pheromone-treated cells of 43 segregants of a cross between two highly diverged yeast strains, YJM789 and S288c, as well as the parental lines. We identified extensive Ste12 binding variation among individuals and mapped underlying cis- and trans- acting loci responsible for such variation. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL9825
48 Samples
Download data: TXT
Series
Accession:
GSE19634
ID:
200019634
13.

DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action and evolutionary histories

(Submitter supplied) DNA variants that alter gene expression contribute to variation in many phenotypic traits. In particular, trans-acting variants, which are often located on different chromosomes from the genes they affect, are an important source of heritable gene expression variation. However, our knowledge about the identity and mechanism of causal trans-acting variants remains limited. Here, we developed a fine-mapping strategy called CRISPR-Swap and dissected three expression quantitative trait locus (eQTL) hotspots known to alter the expression of multiple genes in trans in the yeast Saccharomyces cerevisiae. more...
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by high throughput sequencing
Platform:
GPL26302
25 Samples
Download data: TXT
Series
Accession:
GSE134169
ID:
200134169
14.

K. lactis Ste12-myc ChIP-Seq in pheromone-responding a cells

(Submitter supplied) The purpose of this experiment was to determine the genes directly regulated by Ste12 in K. lactis. The experiment was performed in a cells to determine if the a-specific genes were bound by Ste12. Ste12 was tagged with c-myc and was immunoprecipitated with a c-myc antibody. Cells were starved in SD media lacking phosphate for 2 hours, then treated with 10µg/mL K. lactis alpha factor for 2 hours before harvesting. more...
Organism:
Kluyveromyces lactis
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19759
4 Samples
Download data: BEDGRAPH
Series
Accession:
GSE65792
ID:
200065792
15.

Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

(Submitter supplied) In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. more...
Organism:
Saccharomyces cerevisiae
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17342 GPL9377
11 Samples
Download data: BW
Series
Accession:
GSE61596
ID:
200061596
16.

Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation

(Submitter supplied) Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. more...
Organism:
Candida albicans
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
Platforms:
GPL6475 GPL6474
16 Samples
Download data: TXT
Series
Accession:
GSE10622
ID:
200010622
17.

Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation_expression profiling

(Submitter supplied) Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. more...
Organism:
Candida albicans
Type:
Expression profiling by array
Platform:
GPL6475
12 Samples
Download data: TXT
Series
Accession:
GSE10499
ID:
200010499
18.

Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation_ChIP-CHIP

(Submitter supplied) Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb-domain protein Tbf1 working in conjunction with Cbf1. more...
Organism:
Candida albicans
Type:
Genome binding/occupancy profiling by genome tiling array
Platform:
GPL6474
4 Samples
Download data: TXT
Series
Accession:
GSE10458
ID:
200010458
19.

Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights

(Submitter supplied) Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae transcription factors but a comprehensive evaluation of their data has been lacking. Results: We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. more...
Organism:
Saccharomyces cerevisiae; synthetic construct
Type:
Other
Platform:
GPL6796
27 Samples
Download data
Series
Accession:
GSE34306
ID:
200034306
20.

Gene expression profile of abf1-1 mutant at 36 degrees C

(Submitter supplied) The abf1-1 mutant and wild type cells were grown at 30 degrees C in YPAD until OD600 reached 1.0-1.2. The same volume of 42 degrees C preheated YPAD was added for each flask. After 45 min incubation at 36 degrees C, cells were harvested and RNA was isolated. Four repeats of microarray results are in this series. Keywords: repeat sample
Organism:
Saccharomyces cerevisiae
Type:
Expression profiling by array
Platform:
GPL1300
4 Samples
Download data
Series
Accession:
GSE1492
ID:
200001492
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=6|blobid=MCID_679baab3f52116069071b0aa|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center