U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Cohesin regulates gene expression through spatial clustering of enhancer elements

(Submitter supplied) H3K27Ac ChIP-seq in wild type and cohesin-deficient thymocytes
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
11 Samples
Download data: BED, WIG
Series
Accession:
GSE61428
ID:
200061428
2.

Cohesin-based chromatin interactions enable regulated gene expression within pre-existing architectural compartments.

(Submitter supplied) Chromosome conformation capture approaches have shown that interphase chromatin is organized into an architectural framework of Mb-sized compartments and sub-Mb-sized topological domains. Cohesin controls chromosome topology to facilitate DNA repair and chromosome segregation in cycling cells, and also associates with active enhancers and promoters and with CTCF to form long-range interactions important for gene regulation. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing; Other
Platform:
GPL9250
13 Samples
Download data: BED, TAR, TXT
Series
Accession:
GSE48763
ID:
200048763
3.

Cohesin mediates transcriptional insulation by CCCTC-binding factor

(Submitter supplied) Chromosome segregation in mitosis and meiosis depends on sister chromatid cohesion mediated by cohesin complexes. Mutation of cohesin and other cohesion proteins causes transcriptional and developmental defects in animals and humans, but the molecular cause of these phenotypes is unknown. Here we describe 8811 cohesin binding sites in the human genome and show that the CCCTC-binding factor (CTCF) is associated with 88% of these. more...
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by genome tiling array
17 related Platforms
50 Samples
Download data: CEL
Series
Accession:
GSE9613
ID:
200009613
4.

Long-range chromosome interactions mediated by cohesin shape circadian gene expression [ChIP-Seq]

(Submitter supplied) Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes. As genome-wide transcription is organized under the high-order chromosome structure, it is unclear how circadian gene expression is influenced by chromosome structure. In this study, we focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor) in circadian rhythm. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: BW
Series
Accession:
GSE77162
ID:
200077162
5.

Long-range chromosome interactions mediated by cohesin shape circadian gene expression

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Other; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL13112
12 Samples
Download data: BW, TXT
Series
Accession:
GSE68832
ID:
200068832
6.

Long-range chromosome interactions mediated by cohesin shape circadian gene expression [RNA-Seq]

(Submitter supplied) Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes. As genome-wide transcription is organized under the high-order chromosome structure, it is unclear how circadian gene expression is influenced by chromosome structure. In this study, we focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor) in circadian rhythm. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
4 Samples
Download data: TXT
Series
Accession:
GSE68831
ID:
200068831
7.

Long-range chromosome interactions mediated by cohesin shape circadian gene expression [4C]

(Submitter supplied) Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes. As genome-wide transcription is organized under the high-order chromosome structure, it is unclear how circadian gene expression is influenced by chromosome structure. In this study, we focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor) in circadian rhythm. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL13112
6 Samples
Download data: TXT
Series
Accession:
GSE68830
ID:
200068830
8.

CTCF and Cohesin link sex-biased distal regulatory elements to sex-biased gene expression in mouse liver

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL21103 GPL17021
43 Samples
Download data
Series
Accession:
GSE131128
ID:
200131128
9.

4C-seq analysis of interactions with promoters and enhancers nearby five sex-specific genes, in male and female mouse liver

(Submitter supplied) Sequencing files provided here include 4C-seq experiments for a total of 6 viewpoints neighboring 5 highly sex-biased genes in mouse liver. These files are part of a larger study ("CTCF and Cohesin link sex-biased distal regulatory elements to sex-biased gene expression in mouse liver"), where we compare CTCF and cohesin binding in male and female mouse liver as well as differences in chromatin conformation (DNA looping).
Organism:
Mus musculus
Type:
Other
Platform:
GPL17021
36 Samples
Download data: BW
Series
Accession:
GSE130911
ID:
200130911
10.

CTCF and Cohesin (Rad21) ChIP-seq in female mouse liver

(Submitter supplied) Sequencing files provided here include mouse liver ChIP-seq for CTCF and the cohesin subunit Rad21. These files are part of a larger study ("CTCF and Cohesin link sex-biased distal regulatory elements to sex-biased gene expression in mouse liver") where we compare CTCF and cohesin binding in male and female mouse liver as well as differences in chromatin conformation (DNA looping).
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21103
7 Samples
Download data: BED
Series
Accession:
GSE130908
ID:
200130908
11.

Computational prediction of CTCF/cohesin-based intra-TAD (sbTAD) loops that insulate chromatin contacts and gene expression in mouse liver

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below, and presents the high throuput sequencing datasets that were generated as part of a larger study that investigates the role of CTCF and cohesin as key drivers of 3D-nuclear organization, anchoring the megabase-scale Topologically Associating Domains (TADs) that segment the genome. This study presents and validates a computational method to predict cohesin-and-CTCF binding sites that form intra-TAD DNA loops. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing; Other
Platforms:
GPL21103 GPL17021 GPL13112
15 Samples
Download data
Series
Accession:
GSE102999
ID:
200102999
12.

CTCF and Cohesin (Rad21) ChIP-seq in male mouse liver

(Submitter supplied) Sequencing files provided here include mouse liver ChIP-seq for CTCF and the cohesin subunit Rad21. These files are part of a larger study where we describe features of Topologically Associating Domains (TADs) and their impact on liver gene expression, then use these features to computationally predict subTAD structures not otherwise readily identifiable due to the low resolution of Hi-C. Our findings reveal that CTCF-based subTAD loops maintain key insulating properties of TADs, and support the proposal that subTADs are formed by the same loop extrusion mechanism and contribute to nuclear architecture as intra-TAD scaffolds that further constrain enhancer-promoter interactions. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21103 GPL13112
7 Samples
Download data: BED
Series
Accession:
GSE102997
ID:
200102997
13.

ChIP-seq for CTCF and Rad21 in Rag1−/− pro-B cells

(Submitter supplied) Genome-wide ChIP data of CTCF and Rad21 binding in Rag1−/− pro-B cells
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9250
3 Samples
Download data: BED, WIG
Series
Accession:
GSE26257
ID:
200026257
14.

Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Other; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL16417 GPL17021
88 Samples
Download data: BW, WIG
Series
Accession:
GSE97871
ID:
200097871
15.

Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo (RNA-Seq)

(Submitter supplied) The genome is organized via CTCF/cohesin binding sites, which partition chromosomes into 1-5Mb topologically associated domains (TADs), and further into smaller contact sub-domains within TADs (sub-TADs; 40-1000kb). Here we examined in vivo an ~80kb sub-TAD, containing the mouse α-globin gene cluster, lying within a ~1Mb TAD. We find that the sub-TAD is flanked by predominantly convergent CTCF/cohesin sites which are ubiquitously bound by CTCF but only interact during erythropoiesis, defining a self-interacting erythroid compartment. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
9 Samples
Download data: WIG
Series
Accession:
GSE97870
ID:
200097870
16.

Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo (ChIP-Seq)

(Submitter supplied) The genome is organized via CTCF/cohesin binding sites, which partition chromosomes into 1-5Mb topologically associated domains (TADs), and further into smaller contact sub-domains within TADs (sub-TADs; 40-1000kb). Here we examined in vivo an ~80kb sub-TAD, containing the mouse α-globin gene cluster, lying within a ~1Mb TAD. We find that the sub-TAD is flanked by predominantly convergent CTCF/cohesin sites which are ubiquitously bound by CTCF but only interact during erythropoiesis, defining a self-interacting erythroid compartment. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL17021 GPL19057
36 Samples
Download data: BW
Series
Accession:
GSE97869
ID:
200097869
17.

Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo (Capture-C"

(Submitter supplied) The genome is organized via CTCF/cohesin binding sites, which partition chromosomes into 1-5Mb topologically associated domains (TADs), and further into smaller contact sub-domains within TADs (sub-TADs; 40-1000kb). Here we examined in vivo an ~80kb sub-TAD, containing the mouse α-globin gene cluster, lying within a ~1Mb TAD. We find that the sub-TAD is flanked by predominantly convergent CTCF/cohesin sites which are ubiquitously bound by CTCF but only interact during erythropoiesis, defining a self-interacting erythroid compartment. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL16417
33 Samples
Download data: TXT
Series
Accession:
GSE97867
ID:
200097867
18.

Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo (ATAC-Seq)

(Submitter supplied) The genome is organized via CTCF/cohesin binding sites, which partition chromosomes into 1-5Mb topologically associated domains (TADs), and further into smaller contact sub-domains within TADs (sub-TADs; 40-1000kb). Here we examined in vivo an ~80kb sub-TAD, containing the mouse α-globin gene cluster, lying within a ~1Mb TAD. We find that the sub-TAD is flanked by predominantly convergent CTCF/cohesin sites which are ubiquitously bound by CTCF but only interact during erythropoiesis, defining a self-interacting erythroid compartment. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL16417
10 Samples
Download data: BW
Series
Accession:
GSE97866
ID:
200097866
19.

Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression

(Submitter supplied) To understand how chromatin domains coordinate gene expression, we dissected select genetic elements organizing topology and transcription around the Prdm14 super enhancer in mouse embryonic stem cells. Taking advantage of allelic polymorphisms, we developed methods to sensitively analyze changes in chromatin topology, gene expression, and protein recruitment. We show that enhancer insulation does not strictly rely on loop formation between its flanking boundaries, that the enhancer activates the Slco5a1 gene beyond its prominent domain boundary, and that it recruits cohesin for loop extrusion. more...
Organism:
Mus musculus
Type:
Other
Platforms:
GPL28599 GPL19057 GPL23969
27 Samples
Download data: HDF5, HIC, WIG
Series
Accession:
GSE173354
ID:
200173354
20.

Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes

(Submitter supplied) Developmental gene expression is often controlled by distal regulatory DNA elements called enhancers. Distant enhancer action is restricted to structural chromosomal domains that are flanked by CTCF-associated boundaries and formed through cohesin chromatin loop extrusion. To better understand how enhancers, genes and CTCF boundaries together form structural domains and control expression, we used a bottom-up approach, building series of active regulatory landscapes in inactive chromatin. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL18573
146 Samples
Download data: WIG
Series
Accession:
GSE180566
ID:
200180566
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_67504b0d51e3a106b457fe5b|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center