U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Expression data from three types of spermatogonial stem cells.

(Submitter supplied) Multipotent spermatogonial stem cells (mSSCs) derived from SSCs are a potential new source of individualized pluripotent cells in regenerate medicine such as ESCs. We hypothesized that the culture-induced reprogramming of SSCs was mediated by a mechanism different from that of iPS, and was due to up-regulation of specific pluripotency-related genes during cultivation. Through a comparative analysis of expression profile data, we try to find cell reprogramming candidate factors from mouse spermatogonial stem cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
6 Samples
Download data: CEL
Series
Accession:
GSE74151
ID:
200074151
2.

An integrated systems biology approach identifies positive cofactor 4 as a pluripotency regulatory factor

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array; Expression profiling by high throughput sequencing
Platforms:
GPL17021 GPL1261
8 Samples
Download data: CEL
Series
Accession:
GSE74156
ID:
200074156
3.

RNA sequencing analysis in WT and Pc4-OE mESC lines.

(Submitter supplied) Spermatogonial stem cells (SSCs) can spontaneously dedifferentiate into embryonic stem cell (ESC)-like cells, which are designated as multipotent SSCs (mSSCs), without ectopic expression of reprogramming factors. SSCs express key OSKM reprogramming factors at some levels, and do not require ectopic expression of any gene for the acquisition of pluripotency during reprogramming to mSSCs. Therefore, we reasoned that additional factors are required to regulate SSC reprogramming. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
2 Samples
Download data: TXT
Series
Accession:
GSE74149
ID:
200074149
4.

Global gene expression analyses of paused iPSCs

(Submitter supplied) Low Klf4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of Klf4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path towards pluripotency. Paused iPSCs with different Klf4 expression levels remain at distinct intermediate stages of reprogramming.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
24 Samples
Download data: TXT
Series
Accession:
GSE56406
ID:
200056406
5.

Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors

(Submitter supplied) Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc, and Klf4. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
11 Samples
Download data: CEL
Series
Accession:
GSE10806
ID:
200010806
6.

The Nuclear Receptor Nr5a2 can replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data
Series
Accession:
GSE19023
ID:
200019023
7.

Global gene expression analysis of OSKM / N2SKM- infected MEFs over time course

(Submitter supplied) We used microarrays to detail the global gene expression profiles of OSKM and N2OSKM-infected MEFs over a time course (3, 7, 11 dpi).
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19022
ID:
200019022
8.

Global gene expression analyses of the Nr5a2 reprogrammed cells

(Submitter supplied) We used microarrays to detail the global programme of gene expression of ESCs, Nr5a2 reprogrammed iPSC lines and MEFs.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6105
32 Samples
Download data: TXT
Series
Accession:
GSE19021
ID:
200019021
9.

Genome-wide mapping of Nr5a2 in mouse embryonic stem cells

(Submitter supplied) Nr5a2 (also known as liver receptor homolog-1, Lrh-1) has been shown to bind both the proximal enhancer and proximal promoter regions of Pou5f1 and regulate Pou5f1 in the epiblast stage of mouse embryonic development (Gu et al., 2005). Nr5a2-null embryos display a loss of Oct4 expression in the epiblasts (Gu et al., 2005) and die between E6.5 and E7.5 (Gu et al., 2005; Pare et al., 2004). To identify the targets of Nr5a2, we generated a stable ES cell-line that expresses HA-tagged Nr5a2. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL9185
2 Samples
Download data: BED, TXT
Series
Accession:
GSE19019
ID:
200019019
10.

Expression data from iPSCs generated with Yamanaka factors and miR-302 cluster

(Submitter supplied) Baseline gene expression of adipose stem cell derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to analyze the global gene expression of hACS derived iPSCs with KMOS and KMOS+miR-302.
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
8 Samples
Download data: CEL
Series
Accession:
GSE37896
ID:
200037896
11.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
4 related Platforms
32 Samples
Download data: TXT
Series
Accession:
GSE103536
ID:
200103536
12.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [ATAC-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
7 Samples
Download data: BED
Series
Accession:
GSE103535
ID:
200103535
13.

Transcription factor NKX3-1 is required for reprogramming to pluripotency and can replace OCT4 in mouse and human iPSC induction [RNA-seq]

(Submitter supplied) Resolution of early molecular events preceding endogenous OCT4 activation is critical to understanding the mechanism of reprogramming somatic cells to induced pluripotent stem cells (iPSCs), yet capturing transient regulators at the onset of reprogramming is difficult in heterogeneous populations of asynchronously reprogramming fibroblasts following four-factor transduction. To address this need, we used a heterokaryon system to identify an early and transiently expressed homeobox transcription factor, NKX3-1. more...
Organism:
Mus musculus; Homo sapiens
Type:
Expression profiling by high throughput sequencing
4 related Platforms
25 Samples
Download data: TXT
Series
Accession:
GSE103509
ID:
200103509
14.

Global transcriptome profiling of Oct4/Klf4/Sox2 (3Factor, 3F) + IL6 iPS clones derived from mouse embryonic fibroblasts.

(Submitter supplied) We used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
8 Samples
Download data: TXT
Series
Accession:
GSE46104
ID:
200046104
15.

OSKM induce extraembryonic endoderm stem (iXEN) cells in parallel to iPS cells

(Submitter supplied) While the reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, they also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established alongside the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
17 Samples
Download data: TXT
Series
Accession:
GSE77550
ID:
200077550
16.

Gene expression profiles of induced pluripotent stem cells (iPSCs) and skin fibroblasts from orangutans

(Submitter supplied) Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans.
Organism:
Homo sapiens; Pongo abelii
Type:
Expression profiling by array
Platform:
GPL571
8 Samples
Download data: CEL
Series
Accession:
GSE69603
ID:
200069603
17.

Transcriptome Signature and Regulation in Human Somatic Cell Reprogramming

(Submitter supplied) Reprogramming of somatic cells produces induced pluripotent stem cells (iPSCs) that are invaluable resources for biomedical research. Transcriptional and epigenetic changes have been investigated to facilitate our understanding of the reprogramming process. Here, we extended the previous transcriptome studies by performing RNA-seq on cells defined by a combination of multiple cellular surface markers. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
30 Samples
Download data: TXT
18.

Recovery of genomic stability by ZSCAN10 in induced pluripotent stem cells from aged donors

(Submitter supplied) Induced pluripotent stem cells (iPSC), which are generated from a patient’s own cells and used to produce transplantable tissues, may particularly benefit older patients who are more likely to suffer from degenerative diseases. However, iPSC generated from aged donors (A-iPSC) exhibit higher genomic instability, defects in apoptosis, and a blunted DNA damage response compared to iPSC generated from younger donors (Y-iPSC). more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL6885
14 Samples
Download data: TXT
Series
Accession:
GSE85365
ID:
200085365
19.

C/EBPα poises B cells for rapid reprogramming into iPS cells

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL13112 GPL13912
48 Samples
Download data: BED, TSV, TXT
Series
Accession:
GSE52397
ID:
200052397
20.

C/EBPα poises B cells for rapid reprogramming into iPS cells [RNA-Seq]

(Submitter supplied) C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL13112
2 Samples
Download data: TSV
Series
Accession:
GSE52396
ID:
200052396
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_675b321cb80ed315f11e2e64|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center