U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 11

1.

A map of mobile DNA insertions in the NCI-60 human cancer cell panel

(Submitter supplied) The National Cancer Institute-60 (NCI-60) cell lines are among the most widely used models of human cancer. They provide a platform to integrate DNA sequence information, epigenetic data, RNA and protein expression, and pharmacologic susceptibilities in studies of cancer cell biology. Genome-wide studies of the NCI-60 have included exome sequencing, karyotyping, and copy number analyses but have not targeted repetitive sequences. more...
Organism:
Homo sapiens
Type:
Genome variation profiling by genome tiling array
Platform:
GPL21986
60 Samples
Download data: GFF, TXT
Series
Accession:
GSE83756
ID:
200083756
2.

The Transposon Insertion site Profiling Chip (TIP-chip)

(Submitter supplied) We have developed a microarray intended for use in finding all transposons in a region of interest. By selectively amplifying and hybridizing transposon flanking DNA to our array, we can localize all transposons in the region present on our TIP-chip, a dense tiling array. We have tested our technology in yeast and have been successful. Keywords: transposon insertion profiling, genomic DNA, yeast
Organism:
Saccharomyces cerevisiae
Type:
Genome variation profiling by genome tiling array
Platform:
GPL4111
7 Samples
Download data
Series
Accession:
GSE5646
ID:
200005646
3.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome [hnRNPC FLASH CLIP-seq]

(Submitter supplied) Transposable elements increase genetic diversity thus making them an important part of evolution and gene regulation in all organisms that carry these sequences. Bulk of our nascent transcriptome is comprised of transposable elements that have the propensity to form strong secondary structures. It is essential to resolve such strong secondary structures to maintain normal cellular function. Here, we show that the major nuclear RNA helicase DHX9/RHA interacts and remodels embedded Alu retrotransposable elements in the human transcriptome and B1 retrotransposable elements in the mouse transcriptome. more...
Organism:
Homo sapiens
Type:
Other
Platform:
GPL18573
4 Samples
Download data: BED, BIGWIG
Series
Accession:
GSE94781
ID:
200094781
4.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome [XL8 DHX9 FLASH CLIP-seq]

(Submitter supplied) Transposable elements increase genetic diversity thus making them an important part of evolution and gene regulation in all organisms that carry these sequences. Bulk of our nascent transcriptome is comprised of transposable elements that have the propensity to form strong secondary structures. It is essential to resolve such strong secondary structures to maintain normal cellular function. Here, we show that the major nuclear RNA helicase DHX9/RHA interacts and remodels embedded Alu retrotransposable elements in the human transcriptome and B1 retrotransposable elements in the mouse transcriptome. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL19057
4 Samples
Download data: BED, BIGWIG, GFF
Series
Accession:
GSE89751
ID:
200089751
5.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome [XL9 DHX9 FLASH CLIP-seq]

(Submitter supplied) Transposable elements increase genetic diversity thus making them an important part of evolution and gene regulation in all organisms that carry these sequences. Bulk of our nascent transcriptome is comprised of transposable elements that have the propensity to form strong secondary structures. It is essential to resolve such strong secondary structures to maintain normal cellular function. Here, we show that the major nuclear RNA helicase DHX9/RHA interacts and remodels embedded Alu retrotransposable elements in the human transcriptome and B1 retrotransposable elements in the mouse transcriptome. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL19057
4 Samples
Download data: BED, BIGWIG, GFF
Series
Accession:
GSE89598
ID:
200089598
6.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome [XL1 DHX9 FLASH CLIP-seq]

(Submitter supplied) Transposable elements increase genetic diversity thus making them an important part of evolution and gene regulation in all organisms that carry these sequences. Bulk of our nascent transcriptome is comprised of transposable elements that have the propensity to form strong secondary structures. It is essential to resolve such strong secondary structures to maintain normal cellular function. Here, we show that the major nuclear RNA helicase DHX9/RHA interacts and remodels embedded Alu retrotransposable elements in the human transcriptome and B1 retrotransposable elements in the mouse transcriptome. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
6 Samples
Download data: BED, BIGWIG, GFF
Series
Accession:
GSE89276
ID:
200089276
7.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome

(Submitter supplied) Transposable elements are viewed as ‘selfish genetic elements’, yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. With over 1 million insertions, Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. more...
Organism:
Homo sapiens; Drosophila melanogaster; Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
6 related Platforms
90 Samples
Download data: BED, BIGWIG
Series
Accession:
GSE85164
ID:
200085164
8.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome [RNA-Seq]

(Submitter supplied) Transposable elements increase genetic diversity thus making them an important part of evolution and gene regulation in all organisms that carry these sequences. Bulk of our nascent transcriptome is comprised of transposable elements that have the propensity to form strong secondary structures. It is essential to resolve such strong secondary structures to maintain normal cellular function. Here, we show that the major nuclear RNA helicase DHX9/RHA interacts and remodels embedded Alu retrotransposable elements in the human transcriptome and B1 retrotransposable elements in the mouse transcriptome. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
24 Samples
Download data: BIGWIG
Series
Accession:
GSE85161
ID:
200085161
9.

DHX9 suppresses spurious RNA processing defects originating from the Alu invasion of the human genome [uvCLAP CLIP-seq]

(Submitter supplied) Transposable elements increase genetic diversity thus making them an important part of evolution and gene regulation in all organisms that carry these sequences. Bulk of our nascent transcriptome is comprised of transposable elements that have the propensity to form strong secondary structures. It is essential to resolve such strong secondary structures to maintain normal cellular function. Here, we show that the major nuclear RNA helicase DHX9/RHA interacts and remodels embedded Alu retrotransposable elements in the human transcriptome and B1 retrotransposable elements in the mouse transcriptome. more...
Organism:
Homo sapiens; Drosophila melanogaster; Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
4 related Platforms
52 Samples
Download data: BED, BIGWIG, NARROWPEAK
Series
Accession:
GSE85155
ID:
200085155
10.

Genome-wide maps of histone H3K9 acetylation in the mouse strains C57BL/6J, MSM/Ms, and their F1 hybrids

(Submitter supplied) More than one million copies of short interspersed elements (SINEs), a class of retrotransposons, are present in the mammalian genomes, particularly within gene-rich genomic regions. Evidence has accumulated that ancient SINE sequences have acquired new binding sites for transcription factors (TFs) through multiple mutations following retrotransposition, and as a result have rewired the host regulatory network during the course of evolution. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
12 Samples
Download data: NARROWPEAK, WIG
Series
Accession:
GSE156316
ID:
200156316
11.

Transcriptome-scale analysis for RNAs of medium length, designated as melRNA-seq

(Submitter supplied) More than one million copies of short interspersed elements (SINEs), a class of retrotransposons, are present in the mammalian genomes, particularly within gene-rich genomic regions. Evidence has accumulated that ancient SINE sequences have acquired new binding sites for transcription factors (TFs) through multiple mutations following retrotransposition, and as a result have rewired the host regulatory network during the course of evolution. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16417
5 Samples
Download data: TXT
Series
Accession:
GSE156315
ID:
200156315
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=5|blobid=MCID_6748c97d462e1a751e1033d3|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center