U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

LincRNA PVT1 associates with EZH2 and with the androgen receptor in LNCaP prostate cancer cells and inhibits the expression of genes involved with cell death, cell differentiation and cell adhesion

(Submitter supplied) Long intergenic non-coding RNA (lincRNA) PVT1 is an oncogene known to be overexpressed in various types of cancer. PVT1 high expression is associated with increased prostate cancer (PCa) risk while androgen-independent PCa progression is correlated with increased androgen receptor (AR) expression. However, the mechanism of PVT1 and AR involvement in the development of prostate cancer is still unclear. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL20844
32 Samples
Download data: TXT
Series
Accession:
GSE133372
ID:
200133372
2.

Androgen receptor RIP-seq of LNCaP cells treated with androgen hormone

(Submitter supplied) In this work we reported in a high-throughput way (RIP-seq) the RNAs associated with androgen receptor after treatment with androgen hormone. We used a large compilation of lincRNAs to describe the differences between lincRNAs associated to androgen receptor from those who are non-associated with androgen receptor. By integrating different data sources (DNA-seq Seq and CHIP-seq) was possible to describe transcription factors and histone marks diffrentially enriched at the promoter and vicinity of androgen associated lincRNA loci.
Organism:
Homo sapiens
Type:
Other
Platform:
GPL18573
4 Samples
Download data: TXT
3.

Strand-oriented RNAseq of LNCaP prostate cancer cells in culture for 48 h in the absence of androgen

(Submitter supplied) The goal of this study was to use NGS RNAseq deep-sequencing in order to characterize the complement of polyadenylated mRNAs and lncRNAs expressed in LNCaP, a prostate cancer cell line. RNA-seq data were processed as aggregates of the two biological replicates to increase resulting transcriptome coverage. Trimmed reads were mapped with TopHat v.2.0.12 and Bowtie v.2.2.3, and a custom GTF file to guide transcriptome assembly. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
2 Samples
Download data: TXT
4.

Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platforms:
GPL20301 GPL10558 GPL15456
41 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE107782
ID:
200107782
5.

Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator [RNA-seq]

(Submitter supplied) EZH2 induces active transcription of the AR gene, thereby increasing AR level and promoting AR signaling. Importantly, EZH2-mediated activation of AR requires EZH2 protein occupancy at the AR gene promoter, but is independent of PRC2 as well as its histone methyltransferase activity
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
8 Samples
Download data: TXT
6.

Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator [ChIP-seq]

(Submitter supplied) EZH2 induces active transcription of the AR gene, thereby increasing AR level and promoting AR signaling. Importantly, EZH2-mediated activation of AR requires EZH2 protein occupancy at the AR gene promoter, but is independent of PRC2 as well as its histone methyltransferase activity
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL15456
9 Samples
Download data: BEDGRAPH, TXT
Series
Accession:
GSE107780
ID:
200107780
7.

Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator [microarray]

(Submitter supplied) EZH2 induces active transcription of the AR gene, thereby increasing AR level and promoting AR signaling. Importantly, EZH2-mediated activation of AR requires EZH2 protein occupancy at the AR gene promoter, but is independent of PRC2 as well as its histone methyltransferase activity
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
24 Samples
Download data: TXT
Series
Accession:
GSE107779
ID:
200107779
8.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by array; Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL10558 GPL11154
84 Samples
Download data
Series
Accession:
GSE117182
ID:
200117182
9.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression VI

(Submitter supplied) Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL11154
18 Samples
Download data: BW
Series
Accession:
GSE117179
ID:
200117179
10.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression V

(Submitter supplied) Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
18 Samples
Download data: TXT
11.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression IV

(Submitter supplied) Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
12 Samples
Download data: TXT
Series
Accession:
GSE117104
ID:
200117104
12.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression III

(Submitter supplied) Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
12 Samples
Download data: TXT
Series
Accession:
GSE117103
ID:
200117103
13.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression II

(Submitter supplied) Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
12 Samples
Download data: TXT
Series
Accession:
GSE117102
ID:
200117102
14.

The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression I

(Submitter supplied) Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10558
12 Samples
Download data: TXT
Series
Accession:
GSE117098
ID:
200117098
15.

Genome wide analysis of AR binding sites and histone modifications in prostate cancer

(Submitter supplied) Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation.We performed ChIP-seq analysis to investigate the role of AR and histone modifications.In addition, by siRNA mediated knockdown of AR-associated factors, changes of AR-binding sites in prostate cancer cells were analyzed..
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL10999
23 Samples
Download data: BAR, TXT
Series
Accession:
GSE62492
ID:
200062492
16.

Effects of RUNX1 knockdown in AR signaling

(Submitter supplied) Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified RUNX1 is an androgen-regulated gene. In order to investigate the RUNX1 function in prostate cancer cells, we performed gene expression in AR-positive prostate cancer cell lines after siRUNX1 treatment. We also treated cells with vehicle or androgen to analyzed the effects of RUNX1 on AR function.
Organism:
Homo sapiens
Type:
Expression profiling by array
Dataset:
GDS5606
Platform:
GPL6244
4 Samples
Download data: CEL, CHP, TXT
Series
Accession:
GSE62454
ID:
200062454
17.
Full record GDS5606

Androgen effect on runt-related transcription factor 1-deficient prostate cancer cell line

Analysis of androgen receptor (AR)-positive prostate cancer (PC) LNCaP cells depleted for runt-related transcription factor (RUNX1) by siRUNX1 transfection then treated with 10nM dihydrotestosterone (DHT). Results provide insight into the role of RUNX1 in AR-dependent PC.
Organism:
Homo sapiens
Type:
Expression profiling by array, transformed count, 2 agent, 2 genotype/variation sets
Platform:
GPL6244
Series:
GSE62454
4 Samples
Download data: CEL, CHP
18.

Stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
72 Samples
Download data: BIGWIG
Series
Accession:
GSE161268
ID:
200161268
19.

Transcriptome profiles of alternative MED19 LNCaP and control LNCaP cells cultured under androgen deprivation with vehicle or R1881

(Submitter supplied) We report the application of ChIP and RNA sequencing to identify the mechanism whereby stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. We determined the MED19 and AR transcriptomes and cistromes in control and MED19 LNCaP cells. We also examined genome-wide H3K27 acetylation in both the absence and presence of androgens. We found that MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL20301
12 Samples
Download data: TXT, XLS
20.

Genome-wide maps of the androgen receptor and H3K27 upon MED19 overexpression in LNCaP cells

(Submitter supplied) We report the application of ChIP and RNA sequencing to identify the mechanism whereby stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. We determined the MED19 and AR transcriptomes and cistromes in control and MED19 LNCaP cells. We also examined genome-wide H3K27 acetylation in both the absence and presence of androgens. We found that MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
60 Samples
Download data: BIGWIG
Series
Accession:
GSE161167
ID:
200161167
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=2|blobid=MCID_6748e05c43705129cf4baf6e|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center