U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 18

1.

The role of Lhx4 and Bsx homeobox genes in the rat adult pineal gland

(Submitter supplied) Homeobox genes generally encode transcription factors involved in regulating developmental processes. In the pineal gland, a brain structure devoted to nocturnal melatonin synthesis, a number of homeobox genes are also expressed postnatally; among these are the LIM homeobox 4 gene (Lhx4) and the brain‐specific homeobox gene (Bsx). As part of a larger study, we used of siRNA technology to knock down Lhx4 or Bsx expression in cultured adult rat pinealocytes. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18694
9 Samples
Download data: XLSX
Series
Accession:
GSE142476
ID:
200142476
2.

Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression

(Submitter supplied) The vertebrate pineal gland is dedicated to the production of the hormone melatonin, which increases at night to influence circadian and seasonal rhythms. This increase is associated with dramatic changes in the pineal transcriptome. Here, single-cell analysis of the rat pineal transcriptome was approached by sequencing mRNA from ~17,000 individual pineal cells, with the goals of profiling the cells that comprise the pineal gland and examining the proposal that there are two distinct populations of pinealocytes differentiated by the expression of Asmt, which encodes the enzyme that converts N-acetylserotonin to melatonin. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18694
10 Samples
Download data: GTF, MTX, TSV, TXT
Series
Accession:
GSE115723
ID:
200115723
3.

Whole transcriptome profiling of the rat pineal gland during development from embryonic day 21 to adult

(Submitter supplied) The transcriptome of the rat pineal gland is highly dynamic, with many hundreds of genes changing more than two-fold on a 24-hr daily rhythm, as revealed earlier using Affymetrix GeneChip analysis. Several key transcription factors and enzymes are known to change dramatically during development of the pineal gland. Studies on a small number of genes indicate that the onset of rhythmic expression generally occurs later in development. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL14844
8 Samples
Download data: TXT
Series
Accession:
GSE46127
ID:
200046127
4.

Circadian Transcriptome of the Chicken Pineal In Vitro

(Submitter supplied) Chick pinealocytes exhibit all the characteristics of a complete circadian system, comprising photoreceptive inputs, molecular clockworks and an easily measured rhythmic output, melatonin biosynthesis. We used microarray analysis to investigate the expression of approximately 8000 genes within cultured pinealocytes subjected to both LD and DD cycles. We report that a reduced subset of genes were rhythmically expressed in vitro compared to those previously published in vivo, and that gene expression rhythms were lower in amplitude, although the functional distribution of the rhythmic transcriptome was largely similar. more...
Organism:
Gallus gallus
Type:
Expression profiling by array
Platform:
GPL3731
196 Samples
Download data
Series
Accession:
GSE5292
ID:
200005292
5.

Daily Rhythm in Expression of over 600 Genes in the Rodent Pineal Gland: Dominant Role of Adrenergic/cAMP Signaling

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Platforms:
GPL1355 GPL85 GPL341
50 Samples
Download data: CEL
Series
Accession:
GSE12344
ID:
200012344
6.

Expt. C; Daily Rhythm in Expression of >600 Genes in the Rodent Pineal Gland: Dominant Role of Adrenergic/cAMP Signaling

(Submitter supplied) Biological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle. At night, sympathetic input to the pineal gland, originating from the circadian clock in the suprachiasmatic nucleus, releases norepinephrine. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Datasets:
GDS3701 GDS3702
Platform:
GPL1355
32 Samples
Download data: CEL
Series
Accession:
GSE12343
ID:
200012343
7.

Expt. B; Daily Rhythm in Expression of >600 Genes in the Rodent Pineal Gland: Dominant Role of Adrenergic/cAMP Signaling

(Submitter supplied) Biological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle. We have analyzed the rat pineal transcriptome at mid-day and mid-night to identify genes that exhibit night/day changes in expression. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Dataset:
GDS3700
Platform:
GPL341
12 Samples
Download data: CEL
Series
Accession:
GSE12342
ID:
200012342
8.

Expt. A; Daily Rhythm in Expression of >600 Genes in the Rodent Pineal Gland: Dominant Role of Adrenergic/cAMP Signaling

(Submitter supplied) Biological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle. We have analyzed the rat pineal transcriptome at mid-day and mid-night to identify genes that exhibit night/day changes in expression. more...
Organism:
Rattus norvegicus
Type:
Expression profiling by array
Dataset:
GDS3699
Platform:
GPL85
6 Samples
Download data: CEL
Series
Accession:
GSE12341
ID:
200012341
9.
Full record GDS3702

In vitro pineal gland organ culture response to adrenergic/cAMP stimulation (Expt. C)

Analysis of pineal organ cultures treated with norepinephrine (NE) and cAMP. Effects of forskolin also examined. Previous studies of night/day differentially expressed genes suggest control by NE/cAMP signaling. Results of this study expand the scope of the NE/cAMP regulatory cascade.
Organism:
Rattus norvegicus
Type:
Expression profiling by array, count, 4 agent sets
Platform:
GPL1355
Series:
GSE12343
12 Samples
Download data: CEL
10.
Full record GDS3701

Night and day effects on pineal gland and various other tissues (Expt. C)

Analysis of pineal glands and other tissues (retina, neocortex, cerebellum, hypothalamus, heart, and liver) obtained from Sprague-Dawley rats at mid-day (ZT7) or midnight (ZT19). Results provide insight into genes that characterize the pineal gland, independent of tonic or night/day influences.
Organism:
Rattus norvegicus
Type:
Expression profiling by array, count, 2 time, 7 tissue sets
Platform:
GPL1355
Series:
GSE12343
20 Samples
Download data: CEL
11.
Full record GDS3700

Night and day effects on pineal gland (Expt. B)

Analysis of pineal glands from Sprague-Dawley rats at mid-day (ZT7) or midnight (ZT19). Similar samples from pineal gland-specific DNF2 transgenic rats also examined. The pineal plays a vital role in vertebrate chronobiology. Results provide insight into night/day changes in pineal gene expression.
Organism:
Rattus norvegicus
Type:
Expression profiling by array, count, 2 genotype/variation, 2 time sets
Platform:
GPL341
Series:
GSE12342
12 Samples
Download data: CEL
12.
Full record GDS3699

Night and day effects on pineal gland (Expt. A)

Analysis of pineal glands from Sprague-Dawley rats at mid-day (Zeitgeber time ZT7) or midnight (ZT19). Rats were kept on a 14:10 light-dark (LD) cycle. The pineal gland plays a vital role in vertebrate chronobiology. Results provide insight into night/day changes in pineal gene expression.
Organism:
Rattus norvegicus
Type:
Expression profiling by array, count, 2 time sets
Platform:
GPL85
Series:
GSE12341
6 Samples
Download data: CEL
13.

Next Generation Sequencing Study of Circadian Changes in Transcriptome of Rhesus Macaque Pineal Gland and Retina

(Submitter supplied) Purpose: We performed an NGS study on the circadian changes in Rhesus Macaque retina and pineal gland transcriptome in order to elucidate novel elements in the primate circadian clock. Methods: Total RNA from retina and pineaal glands of Rhesus Macauqes euthanized at 4 timepoints (Dawn, Day, Dusk and Night) was deep sequenced, in triplicate, using Illumina HiSeq2000. Reads were aligned using STAR aligner and differential expression was asssessed using DESeq2. more...
Organism:
Macaca mulatta
Type:
Expression profiling by high throughput sequencing
Platform:
GPL14954
26 Samples
Download data: XLSX
Series
Accession:
GSE78165
ID:
200078165
14.

spatial RNA-seq of SCG

(Submitter supplied) Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared to controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. more...
Organism:
Mus musculus
Type:
Other
Platform:
GPL33428
1 Sample
Download data: HDF5, TAR
Series
Accession:
GSE233223
ID:
200233223
15.

heart healthy and heart diseased SCGs

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens; Mus musculus
Type:
Expression profiling by high throughput sequencing; Other
5 related Platforms
25 Samples
Download data: GTF, HDF5, MTX, TAR, TSV, XLSX
Series
Accession:
GSE231767
ID:
200231767
16.

single-cell RNA-seq of healthy (ctrl) and heart diseased (TAC) SCGs

(Submitter supplied) Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared to controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL24247
4 Samples
Download data: MTX, TSV
Series
Accession:
GSE231766
ID:
200231766
17.

RNA-seq of heart healthy and heart diseased SCGs and pineal glands

(Submitter supplied) Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared to controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21103 GPL24247
12 Samples
Download data: GTF, XLSX
Series
Accession:
GSE231764
ID:
200231764
18.

RNA-seq of heart healthy and heart diseased SCGs

(Submitter supplied) Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared to controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
6 Samples
Download data: GTF
Series
Accession:
GSE231763
ID:
200231763
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=6|blobid=MCID_6749973f86d4ad4f7f681d52|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center