U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 20

1.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems [foxp3_p300 ChIP-seq]

(Submitter supplied) The discovery, characterization, and adaptation of the RNA-guided clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 system has greatly increased the ease with which genome and epigenome editing can be performed. Fusion of chromatin-modifying domains to the nuclease-deactivated form of Cas9 (dCas9) has enabled targeted gene activation or repression in both cultured cells and in vivo in animal models. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL19057
9 Samples
Download data: BW
Series
Accession:
GSE167470
ID:
200167470
2.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems [foxp3_p300 RNA-seq]

(Submitter supplied) The discovery, characterization, and adaptation of the RNA-guided clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 system has greatly increased the ease with which genome and epigenome editing can be performed. Fusion of chromatin-modifying domains to the nuclease-deactivated form of Cas9 (dCas9) has enabled targeted gene activation or repression in both cultured cells and in vivo in animal models. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL19057
11 Samples
Download data: TXT
Series
Accession:
GSE167472
ID:
200167472
3.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL19057 GPL21103
116 Samples
Download data: BW, TXT
Series
Accession:
GSE146848
ID:
200146848
4.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems [pdx1 RNA-seq]

(Submitter supplied) The discovery, characterization, and adaptation of the RNA-guided clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 system has greatly increased the ease with which genome and epigenome editing can be performed. Fusion of chromatin-modifying domains to the nuclease-deactivated form of Cas9 (dCas9) has enabled targeted gene activation or repression in both cultured cells and in vivo in animal models. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
12 Samples
Download data: TXT
Series
Accession:
GSE146847
ID:
200146847
5.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems [pdx1 ChIP-seq]

(Submitter supplied) The discovery, characterization, and adaptation of the RNA-guided clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 system has greatly increased the ease with which genome and epigenome editing can be performed. Fusion of chromatin-modifying domains to the nuclease-deactivated form of Cas9 (dCas9) has enabled targeted gene activation or repression in both cultured cells and in vivo in animal models. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21103
36 Samples
Download data: BW
Series
Accession:
GSE146843
ID:
200146843
6.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems [pcsk9 RNA-seq]

(Submitter supplied) The discovery, characterization, and adaptation of the RNA-guided clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 system has greatly increased the ease with which genome and epigenome editing can be performed. Fusion of chromatin-modifying domains to the nuclease-deactivated form of Cas9 (dCas9) has enabled targeted gene activation or repression in both cultured cells and in vivo in animal models. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
12 Samples
Download data: TXT
Series
Accession:
GSE146838
ID:
200146838
7.

Transgenic mice for in vivo epigenome editing with CRISPR-based systems [pcsk9 ChIP-seq]

(Submitter supplied) The discovery, characterization, and adaptation of the RNA-guided clustered regularly interspersed short palindromic repeat (CRISPR)-Cas9 system has greatly increased the ease with which genome and epigenome editing can be performed. Fusion of chromatin-modifying domains to the nuclease-deactivated form of Cas9 (dCas9) has enabled targeted gene activation or repression in both cultured cells and in vivo in animal models. more...
Organism:
Mus musculus
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL21103
36 Samples
Download data: BW
Series
Accession:
GSE146828
ID:
200146828
8.

Engineering epigenetic memory requires co-targeting of histone methylatransferases and DNA methylatransferases

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Methylation profiling by array; Genome binding/occupancy profiling by high throughput sequencing
Platforms:
GPL21145 GPL20301
15 Samples
Download data: IDAT
Series
Accession:
GSE123885
ID:
200123885
9.

Engineering epigenetic memory requires co-targeting of histone methylatransferases and DNA methylatransferases [ChIP-seq]

(Submitter supplied) Rewriting of the epigenome has risen as a promising alternative to gene editing for precision medicine. In nature, epigenetic silencing can result in complete attenuation of target gene expression over multiple mitotic divisions. However, persistent repression has been difficult to achieve using targeted systems. Here, we report that robust and persistent epigenetic memory required both a DNA methyltransferase (DNMT3A-dCas9) and a histone methyltransferase (Ezh2-dCas9 or KRAB-dCas9). more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL20301
7 Samples
Download data: BEDGRAPH, NARROWPEAK
Series
Accession:
GSE123882
ID:
200123882
10.

Engineering epigenetic memory requires co-targeting of histone methylatransferases and DNA methylatransferases [Methylation]

(Submitter supplied) Rewriting of the epigenome has risen as a promising alternative to gene editing for precision medicine. In nature, epigenetic silencing can result in complete attenuation of target gene expression over multiple mitotic divisions. However, persistent repression has been difficult to achieve using targeted systems. Here, we report that robust and persistent epigenetic memory required both a DNA methyltransferase (DNMT3A-dCas9) and a histone methyltransferase (Ezh2-dCas9 or KRAB-dCas9). more...
Organism:
Homo sapiens
Type:
Methylation profiling by array
Platform:
GPL21145
8 Samples
Download data: IDAT, TXT
Series
Accession:
GSE123830
ID:
200123830
11.

Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements

(Submitter supplied) Epigenome editing with the CRISPR/Cas9 platform is a promising technology to modulate gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms that direct gene regulation. Fusions of the nuclease-inactive dCas9 to the KRAB repressor domain (dCas9-KRAB) can effectively silence target gene expression. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates the expression of multiple globin genes. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL15520 GPL16791
18 Samples
Download data: TXT
12.

Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements

(Submitter supplied) Epigenome editing with the CRISPR/Cas9 platform is a promising technology to modulate gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms that direct gene regulation. Fusions of the nuclease-inactive dCas9 to the KRAB repressor domain (dCas9-KRAB) can effectively silence target gene expression. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates the expression of multiple globin genes. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL16791
30 Samples
Download data: BW
Series
Accession:
GSE70671
ID:
200070671
13.

A modular dCas9-based recruitment platform for combinatorial epigenome editing

(Submitter supplied) Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct ‘effector’ chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL24676
23 Samples
Download data: BED, BEDGRAPH, BW
Series
Accession:
GSE241460
ID:
200241460
14.

Interrogation of Enhancer Function by Enhanced CRISPR Epigenetic Editing

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing; Expression profiling by high throughput sequencing
Platform:
GPL18573
110 Samples
Download data: BIGWIG, TXT
Series
Accession:
GSE132216
ID:
200132216
15.

RNA-seq analysis of transcriptomic changes in HS2 enhancer perturbed cells

(Submitter supplied) Tissue-specific gene expression requires coordinated control of gene-proximal and distal cis-regulatory elements (CREs), yet functional analysis of putative gene-distal CREs such as enhancers remains challenging. Here we describe enhanced CRISPR/dCas9-based epigenetic editing systems, enCRISPRa and enCRISPRi, for multiplexed analysis of enhancer function in situ and in vivo. Using dual effector proteins capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL18573
10 Samples
Download data: TXT
16.

ChIP-seq analysis of cas9, HA, H3K4me, H3K4me2, H3K9me3, H3K27ac, CTCF, GATA1 and TAL1 in HS2 enhancer perturbed K562 cells or other leukemia cell lines

(Submitter supplied) Tissue-specific gene expression requires coordinated control of gene-proximal and distal cis-regulatory elements (CREs), yet functional analysis of putative gene-distal CREs such as enhancers remains challenging. Here we describe enhanced CRISPR/dCas9-based epigenetic editing systems, enCRISPRa and enCRISPRi, for multiplexed analysis of enhancer function in situ and in vivo. Using dual effector proteins capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
99 Samples
Download data: BIGWIG
Series
Accession:
GSE132212
ID:
200132212
17.

ATAC-seq analysis of Jurkat leukemia cell lines

(Submitter supplied) Tissue-specific gene expression requires coordinated control of gene-proximal and distal cis-regulatory elements (CREs), yet functional analysis of putative gene-distal CREs such as enhancers remains challenging. Here we describe enhanced CRISPR/dCas9-based epigenetic editing systems, enCRISPRa and enCRISPRi, for multiplexed analysis of enhancer function in situ and in vivo. Using dual effector proteins capable of re-writing enhancer-associated chromatin modifications, we show that enCRISPRa and enCRISPRi modulate gene transcription by remodeling local epigenetic landscapes at sgRNA-targeted enhancers and associated genes. more...
Organism:
Homo sapiens
Type:
Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL18573
1 Sample
Download data: BIGWIG
Series
Accession:
GSE132209
ID:
200132209
18.

Epigenome Editing by a CRISPR/Cas9-Based Acetyltransferase Activates Genes from Promoters and Enhancers

(Submitter supplied) Epigenetic modifications determine the structure and regulation of eukaryotic genomes and define key signatures of cell lineage specification. Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. more...
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL16791
12 Samples
Download data: TXT
19.

DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing; Methylation profiling by high throughput sequencing
Platform:
GPL11154
29 Samples
Download data: TXT
Series
Accession:
GSE97816
ID:
200097816
20.

DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A [RNA-Seq]

(Submitter supplied) We demonstrate that dCas9-SunTag-DNMT3A dramatically increased CpG methylation at the HOXA5 locus in human embryonic kidney 293T cells (HEK293T). Furthermore, using a single sgRNA, dCas9-SunTag-DNMT3A was able to methylate a 4.5 kb genomic region and repress HOXA5 gene expression. Reduced representation bisulfite sequencing (RRBS) and RNA-seq showed that dCas9-SunTag-DNMT3A methylated regions of interest with minimal impact on the global DNA methylome and transcriptome.
Organism:
Homo sapiens
Type:
Expression profiling by high throughput sequencing
Platform:
GPL11154
5 Samples
Download data: TXT
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=3|blobid=MCID_677bd5610bdf8a6e73036b3b|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center