U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from GEO DataSets

Items: 16

1.

Single-cell transcriptomics reveals glial cells integrate homeostatic and circadian processes to drive sleep-wake cycle

(Submitter supplied) The sleep-wake cycle is determined by a circadian and a sleep homeostatic process. However, the molecular impact of these two processes and their interaction on different cell populations in the brain remain unknown. To fill this gap, we have profiled the single-cell transcriptome of adult fruit fly brains across the sleep-wake cycle and different circadian times. We show cell type-specific transcriptomic changes between sleep/wakefulness states, different levels of sleep drive, and varying circadian times, with glial cells displaying the largest variations. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platforms:
GPL21306 GPL25244
7 Samples
Download data: CSV, MTX, TSV
Series
Accession:
GSE221239
ID:
200221239
2.

Sleep-wake driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex

(Submitter supplied) We monitored gene expression and chromatin accessibility in the cerebral cortex of 10-12 week-old male C57BL/6J mice for 24 hours before and until 48 hours after the end of a single total sleep deprivation (SD) episode. The aim was to characterise the response to SD and recovery thereafter.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing; Genome binding/occupancy profiling by high throughput sequencing
Platform:
GPL17021
123 Samples
Download data: GTF, TXT
Series
Accession:
GSE140345
ID:
200140345
3.

Next generation sequencing of isolated R5 ellipsoid body neurons of Drosophila in the morning and evening with and without sleep deprivation

(Submitter supplied) Purpose: After identifying a difference in the response to sleep deprivation between the morning and evening, we assayed gene expression in a key homeostatic circuit in the Drosophila brain: the R5 ellipsoid body neurons. We sought to identify changes in gene expression in this circuit that are critical for the behavioral output. Methods: Flies expressing GFP via a restrictive R5 driver were entrained to a 12:12 light:dark paradigm at 25C. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by high throughput sequencing
Platform:
GPL25244
12 Samples
Download data: CSV, H5
Series
Accession:
GSE186076
ID:
200186076
4.

Blood gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation

(Submitter supplied) To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation (SD). Blood draws every 4 hours during a 3-day study: 24-hour normal baseline, 38 hours of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-hr psychomotor vigilance test (PVT) assessment when awake. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL10379
249 Samples
Download data: CEL
Series
Accession:
GSE56931
ID:
200056931
5.

Effect of Sleep Deprivation on the Whole Brain of Drosophila

(Submitter supplied) To gain insight into the dynamic molecular processes that are altered during prolonged wakefulness and during sleep. We performed an RNA expression profiling study examining temporal changes in the brain of Drosophila in relationship to the duration of prior sleep or wakefulness. Our experimental design allowed us to determine whether genes identified as differentially regulated between sleep and wakefulness were up- or down-regulated in these states. more...
Organism:
Drosophila melanogaster
Type:
Expression profiling by array
Dataset:
GDS1686
Platform:
GPL72
30 Samples
Download data: CEL, EXP
Series
Accession:
GSE4174
ID:
200004174
6.
Full record GDS1686

Sleep deprivation effect on the brain: time course

Analysis of brain of Canton-S females deprived of sleep by perturbations during their normal sleep period. Perturbation effect also assessed during their active period to control for its effect during sleep deprivation. Results suggest processes altered during prolonged wakefulness and during sleep.
Organism:
Drosophila melanogaster
Type:
Expression profiling by array, transformed count, 6 protocol, 4 time sets
Platform:
GPL72
Series:
GSE4174
30 Samples
Download data: CEL, EXP
DataSet
Accession:
GDS1686
ID:
1686
7.

Gene expression linked to sleep homeostasis in murine cortex

(Submitter supplied) Why we sleep is still one of the most perplexing mysteries in biology. Strong evidence, however, indicates that sleep is necessary for normal brain function and that the need to sleep is a tightly regulated process. Surprisingly molecular mechanisms that determine the need to sleep are incompletely described. Moreover, very little is known about transcriptional changes that specifically accompany the accumulation and discharge of sleep need. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL17400
65 Samples
Download data: CEL
Series
Accession:
GSE78215
ID:
200078215
8.

EphA4 is Involved in Sleep Regulation But Not in the Electrophysiological Response to Sleep Deprivation

(Submitter supplied) Here, we investigated the role of EphA4 in the molecular response to sleep deprivation by measuring forebrain gene expression in EphA4 KO mice. More precisely, we measured the effect of the mutation and of a 6-h sleep deprivation on genome-wide forebrain gene expression using microarray. Please cite the original paper when you use these data (Freyburger et al., Sleep, 2016)
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL16570
19 Samples
Download data: CEL
Series
Accession:
GSE77393
ID:
200077393
9.

The peripheral genome-wide gene expression profiles in humans after prolonged wakefulness and sleep recovery

(Submitter supplied) Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. We evaluated the gene expression profiles of healthy male volunteers who underwent 60 hours of prolonged wakefulness (PW) followed by 12 hours of sleep recovery (SR) using high-resolution microarrays. more...
Organism:
Homo sapiens
Type:
Expression profiling by array
Platform:
GPL570
27 Samples
Download data: CEL
Series
Accession:
GSE37667
ID:
200037667
10.

Sleep deprivation and the brain

(Submitter supplied) This SuperSeries is composed of the SubSeries listed below.
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
131 Samples
Download data: CEL
Series
Accession:
GSE9444
ID:
200009444
11.

Gene expression in brain Homer1a-expressing cells after sleep deprivation

(Submitter supplied) To gain insight into the molecular changes of sleep need, this study addresses gene expression changes in a subpopulation of neurons selectively activated by sleep deprivation. Whole brain expression analyses after 6h sleep deprivation clearly indicate that Homer1a is the best index of sleep need, consistently in all mouse strains analyzed. Transgenic mice expressing a FLAG-tagged poly(A)-binding protein (PABP) under the control of Homer1a promoter were generated. more...
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
24 Samples
Download data: CEL
Series
Accession:
GSE9443
ID:
200009443
12.

Molecular correlates of sleep deprivation in the brain of three inbred mouse strains in an around-the-clock experiment

(Submitter supplied) These studies adress differential changes in gene expression between sleep deprived and control mice. We profiled gene expression at four time points across the 24H Light/Dark cycle to take into account circadian influences and used three different inbred strains to understand the influence of genetic background. Keywords: brain, circadian, genetic background, sleep deprivation
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
71 Samples
Download data: CEL
Series
Accession:
GSE9442
ID:
200009442
13.

The effect of sleep deprivation on gene expression in the brain and the liver of three inbred mouse strains

(Submitter supplied) These studies adress differential changes in gene expression between 6h sleep deprived and control mice in the brain and the liver. We profiled gene expression in three different inbred strains to understand the influence of genetic background. Keywords: brain, genetic background, sleep deprivation
Organism:
Mus musculus
Type:
Expression profiling by array
Platform:
GPL1261
36 Samples
Download data: CEL
Series
Accession:
GSE9441
ID:
200009441
14.

Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation

(Submitter supplied) We report a spatial transcriptomics dataset of mouse brain tissue generated with the 10x Genomics Visium platform to identify gene expression changes after sleep deprivation
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL24247
16 Samples
Download data: TAR
Series
Accession:
GSE222410
ID:
200222410
15.

Single-cell transcriptomics and analysis for new molecular regulators of sleep

(Submitter supplied) The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing to interrogate the molecular and functional underpinnings of sleep. Different cell types in three important brain regions for sleep (brainstem, cortex and hypothalamus) had a similar transcriptional response to sleep need, with a large proportion of cells changing during recovery sleep. more...
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL21103
9 Samples
Download data: TSV
Series
Accession:
GSE137665
ID:
200137665
16.

Systems genetics of sleep regulation

(Submitter supplied) We used a systems genetics approach in the BXD genetic reference population of mice and assembled a comprehensive experimental knowledge base comprising a deep ‘sleep-wake’ phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation.
Organism:
Mus musculus
Type:
Expression profiling by high throughput sequencing
Platform:
GPL17021
172 Samples
Download data: TXT
Series
Accession:
GSE114845
ID:
200114845
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

db=gds|term=|query=1|qty=4|blobid=MCID_675dfb291afe4541ed4cb986|ismultiple=true|min_list=5|max_list=20|def_tree=20|def_list=|def_view=|url=/Taxonomy/backend/subset.cgi?|trace_url=/stat?
   Taxonomic Groups  [List]
Tree placeholder
    Top Organisms  [Tree]

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center