U.S. flag

An official website of the United States government

Release Notes For GenBank Release 118

GBREL.TXT          Genetic Sequence Data Bank
                         15 June 2000

               NCBI-GenBank Flat File Release 118.0

                    Distribution Release Notes

 7077491 loci,  8604221980 bases, from 7077491 reported sequences

  This document describes the format and content of the flat files that
comprise releases of the GenBank database. If you have any questions or
comments about GenBank or this document, please contact NCBI via email
at [email protected] or:

   GenBank
   National Center for Biotechnology Information
   National Library of Medicine, 38A, 8N805
   8600 Rockville Pike
   Bethesda, MD  20894
   USA
   Phone:  (301) 496-2475
   Fax:    (301) 480-9241

==========================================================================
TABLE OF CONTENTS
==========================================================================

1. INTRODUCTION

1.1 Release 118.0
1.2 Cutoff Date
1.3 Important Changes in Release 118.0
1.4 Upcoming Changes
1.5 Request for Direct Submission of Sequence Data
1.6 Organization of This Document

2. ORGANIZATION OF DATA FILES

2.1 Overview
2.2 Files
     2.2.1 File Descriptions
     2.2.5 File Sizes
     2.2.6 Per-Division Statistics 
     2.2.7 Selected Per-Organism Statistics 
     2.2.8 Growth of GenBank

3. FILE FORMATS

3.1 File Header Information
3.2 Directory Files
     3.2.1 Short Directory File
3.3 Index Files
     3.3.1 Accession Number Index File
     3.3.2 Keyword Phrase Index File
     3.3.3 Author Name Index File
     3.3.4 Journal Citation Index File
     3.3.5 Gene Name Index
3.4 Sequence Entry Files
     3.4.1 File Organization
     3.4.2  Entry Organization
     3.4.3 Sample Sequence Data File
     3.4.4 LOCUS Format
     3.4.5 DEFINITION Format
          3.4.5.1 DEFINITION Format for NLM Entries
     3.4.6 ACCESSION Format
     3.4.7 VERSION Format
     3.4.8 KEYWORDS Format
     3.4.9 SEGMENT Format
     3.4.10 SOURCE Format
     3.4.11 REFERENCE Format
     3.4.12 FEATURES Format
          3.4.12.1 Feature Key Names
          3.4.12.2 Feature Location
          3.4.12.3  Feature Qualifiers
          3.4.12.4 Cross-Reference Information
          3.4.12.5 Feature Table Examples
     3.4.13 ORIGIN Format
     3.4.14 SEQUENCE Format

4. ALTERNATE RELEASES

5. KNOWN PROBLEMS OF THE GENBANK DATABASE

5.1 Incorrect Gene Symbols in Entries and Index

6. GENBANK ADMINISTRATION 

6.1 Registered Trademark Notice
6.2 Citing GenBank
6.3 GenBank Distribution Formats and Media
6.4 Other Methods of Accessing GenBank Data
6.5 Request for Corrections and Comments
6.6 Credits and Acknowledgments
6.7 Disclaimer

==========================================================================

1. INTRODUCTION

1.1 Release 118.0

  The National Center for Biotechnology Information (NCBI) at the National
Library of Medicine (NLM), National Institutes of Health (NIH) is responsible
for producing and distributing the GenBank Sequence Database.  NCBI handles
all GenBank direct submissions and authors are advised to use the address
below.  Submitters are encouraged to use the free Sequin software package
for sending sequence data, or the newly developed World Wide Web submission
form.  See Section 1.5 below for details.

*****************************************************************************

The address for direct submissions to GenBank is:

       GenBank Submissions
       National Center for Biotechnology Information
       Bldg 38A, Rm. 8N-803
       8600 Rockville Pike
       Bethesda, MD 20894

       E-MAIL:  [email protected]

Updates and changes to existing GenBank records:

       E-MAIL:  [email protected]

URL for the new GenBank submission tool - BankIt - on the World Wide Web:

       http://www.ncbi.nlm.nih.gov/

(see Section 1.5 for additional details about submitting data to GenBank.)

*****************************************************************************

  GenBank Release 118.0 is a release of sequence data by NCBI in the GenBank
flat file format.  GenBank is a component of a tri-partite, international
collaboration of sequence databases in the U.S., Europe, and Japan.  The
collaborating databases in Europe are the European Molecular Biology Laboratory
(EMBL) at Hinxton Hall, UK, and the DNA Database of Japan (DDBJ) in Mishima,
Japan. Sequence data is also incorporated from the Genome Sequence Data Base
(GSDB), Santa Fe, NM.  Patent sequences are incorporated through arrangements
with the U.S. Patent and Trademark Office, and via the collaborating
international databases from other international patent offices.  The database
is converted to various output formats, including the Flat File and Abstract
Syntax Notation 1 (ASN.1) versions.  The ASN.1 and Flat File forms of the data
are available at NCBI's anonymous FTP server: ncbi.nlm.nih.gov .

1.2 Cutoff Date

  This full release, 118.0, incorporates data available to the databases as of
June 15, 2000.  For more recent data, users are advised to:

  o Download the GenBank Update files by anonymous FTP to 'ncbi.nlm.nih.gov':

	ftp://ncbi.nlm.nih.gov/ncbi-asn1 (ASN.1 format)
	ftp://ncbi.nlm.nih.gov/genbank   (flatfile format)

  o Use the Network-Entrez or Web-Entrez applications to interactively query
    the Entrez: Nucleotides database (see Section 6.4 of this document).

  o Use the NCBI 'query' email server to search the GenBank Updates. Instructions
    regarding the use of the e-mail server can be obtained by sending an email
    message with the word 'help' in it to:  [email protected]

1.3 Important Changes in Release 118.0

1.3.1 Organizational changes

  Due to database growth, the EST division is now being split into sixty-one
pieces.

  Due to database growth, the GSS division is now being split into twenty-three
pieces.

  Due to database growth, the HTG division is now being split into forty-five
pieces.

1.4 Upcoming Changes

1.4.1 New PUBMED linetype for REFERENCEs

  Starting with GenBank Release 119.0 in August 2000, a new PUBMED
linetype will be legal for the REFERENCE block of GenBank flatfiles:

LOCUS       AF245949      558 bp    RNA             VRL       30-APR-2000
DEFINITION  Hepatitis C virus isolate P11 clone A41 polyprotein precursor,
            E1/E2 region, gene, partial cds.
ACCESSION   AF245949
VERSION     AF245949.1  GI:7670856
....
REFERENCE   1  (bases 1 to 558)
  AUTHORS   Farci,P., Shimoda,A., Coiana,A., Diaz,G., Peddis,G.,
            Melpolder,J.C., Strazzera,A., Chien,D.Y., Munoz,S.J.,
            Balestrieri,A., Purcell,R.H. and Alter,H.J.
  TITLE     The outcome of acute hepatitis C predicted by the evolution of the
            viral quasispecies
  JOURNAL   Science 288 (5464), 339-344 (2000)
  MEDLINE   20230065
   PUBMED   10764648

  The PUBMED identifier is the record identifier for article abstracts
in the PubMed database :

       http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed

  Abstracts in PubMed that do not fall within Medline's scope will have only
a PUBMED identifier. Similarly, abstracts that *are* in Medline's scope but
which have not yet been assigned Medline UIs will have only a PUBMED identifier.
If an abstract is present in both the PubMed and Medline databases, both Medline UI
and PubMed ID will be provided.

1.4.2 New format for GenBank Index files

  Starting with GenBank Release 119.0 in August 2000, the format of the
"index" files for releases will change from a tabular, fixed-column
format to a TAB-delimited, line-oriented format. The header information
at the start of index files will no longer be provided.

  In general, index file entries consist of a line containing the indexed
term, followed by a table containing LOCUS/DIVISION/ACCESSION triplets.
For example:

GBKEY.IDX          Genetic Sequence Data Bank
                         15 April 2000

               NCBI-GenBank Flat File Release 117.0

                       Keyword Phrase Index

 6215002 loci,  7376080723 bases, from 6215002 reported sequences
....
ZONA PELLUCIDA 2 GLYCOPROTEIN
             AB000929   ROD AB000929 CATFZP2G   MAM D45067 CJZPG2     PRI Y10767
             DOGCZP2G   MAM D45069 MRZPG2     PRI Y10690 PIGPZP2G   MAM D45064

  Notice that the "fixed" format is already broken, due to the presence of
eight-character accession numbers. Rather than define a new fixed format
that will break at some point in the future, and at the expense of slightly
larger files, the new index files for the above example will look like so:

ZONA PELLUCIDA 2 GLYCOPROTEIN
	   AB000929   ROD AB000929
	   CATFZP2G   MAM D45067
	   CJZPG2     PRI Y10767
	   DOGCZP2G   MAM D45069
	   MRZPG2     PRI Y10690
	   PIGPZP2G   MAM D45064

A series of LOCUS/DIVISION/ACCESSION triplets, TAB-delimited (and with
a leading TAB), one per line, will follow each indexed value.

  Complete details about the changes to the index files will be provided
via the GenBank newsgroup (bionet.molbio.genbank) in late June.

1.4.3 STS division will be split into multiple files

  The STS GenBank division (gbsts.seq) will soon be split into multiple
files, since its size exceeds 300MB. Though the split did not occur for
GenBank 118.0 (because the STS division experienced only trivial growth
since 117.0), it will very likely occur by GenBank Release 119.0
(August 2000). The resulting files for the STS division will be: gbsts1.seq
and gbsts2.seq .

1.4.4 File-naming convention for ASN.1 data files will be changed.

  Starting with GenBank Release 119.0 in August 2000, the filename
convention for the ASN.1 data files used to create GenBank flatfile
releases will be changed. These ASN.1 files can be found at the NCBI
ftp site:

    ftp://ncbi.nlm.nih.gov/ncbi-asn1/

The naming convention for these files is currently:

    DIV-CODE.aso.Z

For example:

    bct1.aso.Z
    bct2.aso.Z

  This convention will be changed so that the ASN.1 filenames and the
GenBank flatfile names match more closely:

    gbDIV-CODE.aso.Z

For example:

    gbbct1.aso.Z
    gbbct2.aso.Z

1.4.5 Change in compression method for GenBank Releases and Updates

  As announced via the GenBank newsgroup on June 15, NCBI will use the
gzip compression utility instead of the Unix 'compress' utility for all
GenBank products starting on August 15, 2000. The nc0815 non-cumulative
update and the GenBank cumulative update of 8/15 will be the first
products to use gzip compression. When Release 119.0 processing is complete
about a week later, the files which comprise that release will also be
compressed with gzip.

  Comparisons of gzip to compress for simplistic sequence data (eg, EST,
GSS, STS) yielded an additional 50% reduction in the size of a compressed
file. Given that ESTs and GSS sequences comprise a huge portion of the
GenBank data NCBI distributes, switching to gzip will save a great deal
of disk space, and will reduce the amount of bandwidth utilized by those who
ftp GenBank products.

  As a result of the switch to gzip, file naming conventions will change.
The suffix of compressed GenBank data files is currently ".Z" . After the
switch, the suffix will become ".gz" . For example:

	gbbct1.seq.Z -> gbbct1.seq.gz
	gbcu.flat.Z  -> gbcu.flat.gz
	nc0610.aso.Z -> nc0610.aso.gz

  If you are unsure about the availability of gzip for your platform, please
contact your system administrator. If you find that the utility is not
installed, one possible place for obtaining gzip is:

	http://www.gnu.org/software/gzip/gzip.html

  Any questions or concerns that you have about this change should be directed
to NCBI's Service Desk:

	[email protected]

1.4.6 Planned reduction in the number of HTG data files

  Quality score data for the sequences generated by the Human Genome Project
are in the process of being incorporated into GenBank records. This data
is stored within our ASN.1 representation, but does not appear in the
GenBank-format flatfiles of the HTG division. Since the basis for splitting
the HTG division into multiple pieces is the size of the ASN.1 representation,
this has led to a decrease in the average size of each piece (currently about
116 MB), and consequently an unnecessarily large number of gbhtg*.seq flatfiles.

  For GenBank 119.0 in August of 2000, the parameters for splitting the HTG
division will be adjusted to yield an average flatfile size of about 250 MB.
This will reduce the number of HTG files by approximately 50%.
  
1.4.7 Selenocysteine representation

  Selenocysteine residues within the protein translations of coding
region features have been represented in GenBank via the letter 'X'
and a /transl_except qualifier. At the May 1999 DDBJ/EMBL/GenBank
collaborative meeting, it was learned that IUPAC plans to adopt the
letter 'U' for selenocysteine.

  DDBJ, EMBL, and GenBank will thus use this new amino acid abbreviation
for its /translation qualifiers. Although a timetable for its appearance
has not been finalized, we are mentioning this now because the introduction
of a new residue abbreviation is a fairly fundamental change.

  Details about the use of 'U' will be made available via these release
notes and the GenBank newsgroup as they become available.

1.4.8 New REFERENCE type for on-line journals

  Agreement was reached at the May 1999 collaborative DDBJ/EMBL/GenBank
meeting that an effort should be made to accomodate references which are
published only on-line. Until specifications for such references are
available from library organizations, GenBank will present them in a manner
like this:

	REFERENCE   1  (bases 1 to 2858)
	  AUTHORS   Smith, J.
	  TITLE     Cloning and expression of a phospholipase gene
	  JOURNAL   Online Publication
	  REMARK    Online-Journal-name; Article Identifier; URL

  This format is still tentative; additional information about this new
reference type will be made available via these release notes.

1.5 Request for Direct Submission of Sequence Data

  A successful GenBank requires that the data enter the database as soon
as possible after publication, that the annotations be as complete as
possible, and that the sequence and annotation data be accurate. All
three of these requirements are best met if authors of sequence data
submit their data directly to GenBank in a usable form. It is especially
important that these submissions be in computer-readable form.

  GenBank must rely on direct author submission of data to ensure that
it achieves its goals of completeness, accuracy, and timeliness. To
assist researchers in entering their own sequence data, GenBank
provides a WWW submission tool called BankIt, as well as a stand-alone
software package called Sequin. BankIt and Sequin are both easy-to-use
programs that enable authors to enter a sequence, annotate it, and
submit it to GenBank.  Through the international collaboration of DNA
sequence databases, GenBank submissions are forwarded daily for inclusion
in the EMBL and DDBJ databases.

  SEQUIN.  Sequin is an interactive, graphically-oriented program based
on screen forms and controlled vocabularies that guides you through the
process of entering your sequence and providing biological and
bibliographic annotation.  Sequin is designed to simplify the sequence submission
process, and to provide increased data handling capabilities to accomodate
very long sequences, complex annotations, and robust error checking.  E-mail
the completed submission file to : [email protected]

  Sequin is provided for Macintosh, PC/Windows, UNIX and VMS computers.
It is available by annonymous ftp from ncbi.nlm.nih.gov; login as
anonymous and use your e-mail address as the password. It is located in
the sequin directory. Or direct your web browser to this URL:

	ftp://ncbi.nlm.nih.gov/sequin

  BANKIT.  BankIt provides a simple forms approach for submitting your
sequence and descriptive information to GenBank.  Your submission will
be submitted directly to GenBank via the World Wide Web, and
immediately forwarded for inclusion in the EMBL and DDBJ databases.
BankIt may be used with Netscape, Internet Explorer, and other common
WWW clients. You can access BankIt from GenBank's home page:   

	http://www.ncbi.nlm.nih.gov/

  AUTHORIN.  Authorin sequence submissions are no longer accepted by
GenBank, and the Authorin application is no longer distributed by NCBI.  

  If you have questions about GenBank submissions or any of the data
submission tools, contact NCBI at: [email protected] or 301-496-2475.

1.6 Organization of This Document

  The second section describes the contents of GenBank releases. The third
section illustrates the formats of the flat files.  The fourth section
describes other versions of the data, the fifth section identifies known prob-
lems, and the sixth contains administrative details.


2. ORGANIZATION OF DATA FILES

2.1 Overview

  GenBank releases consist of a set of ASCII text files, most of which
contain sequence data. A few supplemental "index" files are also supplied,
containing comprehensive lists of author names, journal citations,
gene names, and keywords, along with the accession numbers of the records
in which they can be found (see Section 3.3). The line-lengths of
these files is variable.

2.2 Files

  This GenBank flat file release consists of 159 files. The list
that follows describes each of the files included in the distribution.
Their sizes and base pair content are also summarized.

2.2.1 File Descriptions

1.  gbrel.txt 	- Release notes (this document).
2.  gbsdr.txt 	- Short directory of the data bank.
3.  gbacc.idx 	- Index of the entries according to accession number.
4.  gbkey.idx 	- Index of the entries according to keyword phrase.
5.  gbaut.idx 	- Index of the entries according to author.
6.  gbjou.idx 	- Index of the entries according to journal citation.
7.  gbgen.idx 	- Index of the entries according to gene names.
8.  gbpri1.seq 	- Primate sequence entries, part 1.
9.  gbpri2.seq 	- Primate sequence entries, part 2.
10. gbpri3.seq 	- Primate sequence entries, part 3.
11. gbpri4.seq 	- Primate sequence entries, part 4.
12. gbpri5.seq 	- Primate sequence entries, part 5.
13. gbrod.seq 	- Rodent sequence entries.
14. gbmam.seq 	- Other mammalian sequence entries.
15. gbvrt.seq 	- Other vertebrate sequence entries.
16. gbinv1.seq 	- Invertebrate sequence entries, part 1.
17. gbinv2.seq 	- Invertebrate sequence entries, part 2.
18. gbinv3.seq 	- Invertebrate sequence entries, part 3.
19. gbpln1.seq 	- Plant sequence entries (including fungi and algae), part 1.
20. gbpln2.seq 	- Plant sequence entries (including fungi and algae), part 2.
21. gbpln3.seq 	- Plant sequence entries (including fungi and algae), part 3.
22. gbbct1.seq 	- Bacterial sequence entries, part 1.
23. gbbct2.seq 	- Bacterial sequence entries, part 2.
24. gbvrl1.seq 	- Viral sequence entries, part 1.
25. gbvrl2.seq 	- Viral sequence entries, part 2.
26. gbphg.seq 	- Phage sequence entries.
27. gbsyn.seq 	- Synthetic and chimeric sequence entries.
28. gbuna.seq 	- Unannotated sequence entries.
29. gbest1.seq  - EST (expressed sequence tag) sequence entries, part 1.
30. gbest2.seq  - EST (expressed sequence tag) sequence entries, part 2.
31. gbest3.seq  - EST (expressed sequence tag) sequence entries, part 3.
32. gbest4.seq  - EST (expressed sequence tag) sequence entries, part 4.
33. gbest5.seq  - EST (expressed sequence tag) sequence entries, part 5.
34. gbest6.seq  - EST (expressed sequence tag) sequence entries, part 6.
35. gbest7.seq  - EST (expressed sequence tag) sequence entries, part 7.
36. gbest8.seq  - EST (expressed sequence tag) sequence entries, part 8.
37. gbest9.seq  - EST (expressed sequence tag) sequence entries, part 9.
38. gbest10.seq - EST (expressed sequence tag) sequence entries, part 10.
39. gbest11.seq - EST (expressed sequence tag) sequence entries, part 11.
40. gbest12.seq - EST (expressed sequence tag) sequence entries, part 12.
41. gbest13.seq - EST (expressed sequence tag) sequence entries, part 13.
42. gbest14.seq - EST (expressed sequence tag) sequence entries, part 14.
43. gbest15.seq - EST (expressed sequence tag) sequence entries, part 15.
44. gbest16.seq - EST (expressed sequence tag) sequence entries, part 16.
45. gbest17.seq - EST (expressed sequence tag) sequence entries, part 17.
46. gbest18.seq - EST (expressed sequence tag) sequence entries, part 18.
47. gbest19.seq - EST (expressed sequence tag) sequence entries, part 19.
48. gbest20.seq - EST (expressed sequence tag) sequence entries, part 20.
49. gbest21.seq - EST (expressed sequence tag) sequence entries, part 21.
50. gbest22.seq - EST (expressed sequence tag) sequence entries, part 22.
51. gbest23.seq - EST (expressed sequence tag) sequence entries, part 23.
52. gbest24.seq - EST (expressed sequence tag) sequence entries, part 24.
53. gbest25.seq - EST (expressed sequence tag) sequence entries, part 25.
54. gbest26.seq - EST (expressed sequence tag) sequence entries, part 26.
55. gbest27.seq - EST (expressed sequence tag) sequence entries, part 27.
56. gbest28.seq - EST (expressed sequence tag) sequence entries, part 28.
57. gbest29.seq - EST (expressed sequence tag) sequence entries, part 29.
58. gbest30.seq - EST (expressed sequence tag) sequence entries, part 30.
59. gbest31.seq - EST (expressed sequence tag) sequence entries, part 31.
60. gbest32.seq - EST (expressed sequence tag) sequence entries, part 32.
61. gbest33.seq - EST (expressed sequence tag) sequence entries, part 33.
62. gbest34.seq - EST (expressed sequence tag) sequence entries, part 34.
63. gbest35.seq - EST (expressed sequence tag) sequence entries, part 35.
64. gbest36.seq - EST (expressed sequence tag) sequence entries, part 36.
65. gbest37.seq - EST (expressed sequence tag) sequence entries, part 37.
66. gbest38.seq - EST (expressed sequence tag) sequence entries, part 38.
67. gbest39.seq - EST (expressed sequence tag) sequence entries, part 39.
68. gbest40.seq - EST (expressed sequence tag) sequence entries, part 40.
69. gbest41.seq - EST (expressed sequence tag) sequence entries, part 41.
70. gbest42.seq - EST (expressed sequence tag) sequence entries, part 42.
71. gbest43.seq - EST (expressed sequence tag) sequence entries, part 43.
72. gbest44.seq - EST (expressed sequence tag) sequence entries, part 44.
73. gbest45.seq - EST (expressed sequence tag) sequence entries, part 45.
74. gbest46.seq - EST (expressed sequence tag) sequence entries, part 46.
75. gbest47.seq - EST (expressed sequence tag) sequence entries, part 47.
76. gbest48.seq - EST (expressed sequence tag) sequence entries, part 48.
77. gbest49.seq - EST (expressed sequence tag) sequence entries, part 49.
78. gbest50.seq - EST (expressed sequence tag) sequence entries, part 50.
79. gbest51.seq - EST (expressed sequence tag) sequence entries, part 51.
80. gbest52.seq - EST (expressed sequence tag) sequence entries, part 52.
81. gbest53.seq - EST (expressed sequence tag) sequence entries, part 53.
82. gbest54.seq - EST (expressed sequence tag) sequence entries, part 54.
83. gbest55.seq - EST (expressed sequence tag) sequence entries, part 55.
84. gbest56.seq - EST (expressed sequence tag) sequence entries, part 56.
85. gbest57.seq - EST (expressed sequence tag) sequence entries, part 57.
86. gbest58.seq - EST (expressed sequence tag) sequence entries, part 58.
87. gbest59.seq - EST (expressed sequence tag) sequence entries, part 59.
88. gbest60.seq - EST (expressed sequence tag) sequence entries, part 60.
89. gbest61.seq - EST (expressed sequence tag) sequence entries, part 61.
90. gbpat.seq   - Patent sequence entries.
91. gbsts.seq   - STS (sequence tagged site) sequence entries.
92. gbgss1.seq  - GSS (genome survey sequence) sequence entries, part 1.
93. gbgss2.seq  - GSS (genome survey sequence) sequence entries, part 2.
94. gbgss3.seq  - GSS (genome survey sequence) sequence entries, part 3.
95. gbgss4.seq  - GSS (genome survey sequence) sequence entries, part 4.
96. gbgss5.seq  - GSS (genome survey sequence) sequence entries, part 5.
97. gbgss6.seq  - GSS (genome survey sequence) sequence entries, part 6.
98. gbgss7.seq  - GSS (genome survey sequence) sequence entries, part 7.
99. gbgss8.seq  - GSS (genome survey sequence) sequence entries, part 8.
100.gbgss9.seq  - GSS (genome survey sequence) sequence entries, part 9.
101.gbgss10.seq - GSS (genome survey sequence) sequence entries, part 10.
102.gbgss11.seq - GSS (genome survey sequence) sequence entries, part 11.
103.gbgss12.seq - GSS (genome survey sequence) sequence entries, part 12.
104.gbgss13.seq - GSS (genome survey sequence) sequence entries, part 13.
105.gbgss14.seq - GSS (genome survey sequence) sequence entries, part 14.
106.gbgss15.seq - GSS (genome survey sequence) sequence entries, part 15.
107.gbgss16.seq - GSS (genome survey sequence) sequence entries, part 16.
108.gbgss17.seq - GSS (genome survey sequence) sequence entries, part 17.
109.gbgss18.seq - GSS (genome survey sequence) sequence entries, part 18.
110.gbgss19.seq - GSS (genome survey sequence) sequence entries, part 19.
111.gbgss20.seq - GSS (genome survey sequence) sequence entries, part 20.
112.gbgss21.seq - GSS (genome survey sequence) sequence entries, part 21.
113.gbgss22.seq - GSS (genome survey sequence) sequence entries, part 22.
114.gbgss23.seq - GSS (genome survey sequence) sequence entries, part 23.
115.gbhtg1.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 1.
116.gbhtg2.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 2.
117.gbhtg3.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 3.
118.gbhtg4.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 4.
119.gbhtg5.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 5.
120.gbhtg6.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 6.
121.gbhtg7.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 7.
122.gbhtg8.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 8.
123.gbhtg9.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 9.
124.gbhtg10.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 10.
125.gbhtg11.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 11.
126.gbhtg12.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 12.
127.gbhtg13.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 13.
128.gbhtg14.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 14.
129.gbhtg15.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 15.
130.gbhtg16.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 16.
131.gbhtg17.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 17.
132.gbhtg18.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 18.
133.gbhtg19.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 19.
134.gbhtg20.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 20.
135.gbhtg21.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 21.
136.gbhtg22.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 22.
137.gbhtg23.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 23.
138.gbhtg24.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 24.
139.gbhtg25.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 25.
140.gbhtg26.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 26.
141.gbhtg27.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 27.
142.gbhtg28.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 28.
143.gbhtg29.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 29.
144.gbhtg30.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 30.
145.gbhtg31.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 31.
146.gbhtg32.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 32.
147.gbhtg33.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 33.
148.gbhtg34.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 34.
149.gbhtg35.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 35.
150.gbhtg36.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 36.
151.gbhtg37.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 37.
152.gbhtg38.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 38.
153.gbhtg39.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 39.
154.gbhtg40.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 40.
155.gbhtg41.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 41.
156.gbhtg42.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 42.
157.gbhtg43.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 43.
158.gbhtg44.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 44.
159.gbhtg45.seq	- HTGS (high throughput genomic sequencing) sequence entries, part 45.

  Three supplemental files provide the accession numbers of GenBank entries
that are new, updated, or deleted since the previous release:

a.  gbchg.txt	- Entries updated since the previous release.
b.  gbdel.txt	- Entries deleted since the previous release.
c.  gbnew.txt	- Entries new since the previous release.

  An experimental file called gbcon.seq provides an alternative representation
for complex sequences, such as "segmented sets" and complete-genomes that have
been split into pieces. The GenBank README describes the experimental CON
division of GenBank in more detail:

	ftp://ncbi.nlm.nih.gov/genbank/README.genbank

2.2.5 File Sizes

  Uncompressed, the Release 118.0 flatfiles require roughly 28218 MB
(sequence files only) or 33916 MB (including the 'index' files).  The
following table contains the approximate sizes of the individual files
in this release.  Since minor changes to some of the files may occur
after these release notes have been written, these sizes should not be
used to determine file integrity; they are provided as an aid to planning
only.

File Size      File Name

 274555081     gbacc.idx
4387412026     gbaut.idx
 255495651     gbbct1.seq
 250824448     gbbct2.seq
 230050554     gbest1.seq
 230687908     gbest10.seq
 230689592     gbest11.seq
 230689440     gbest12.seq
 230687601     gbest13.seq
 230688544     gbest14.seq
 230690319     gbest15.seq
 230689640     gbest16.seq
 230688106     gbest17.seq
 230687704     gbest18.seq
 230688137     gbest19.seq
 226993585     gbest2.seq
 230688315     gbest20.seq
 230688925     gbest21.seq
 230688996     gbest22.seq
 230690682     gbest23.seq
 230689416     gbest24.seq
 230690392     gbest25.seq
 230689895     gbest26.seq
 230689750     gbest27.seq
 230689479     gbest28.seq
 191835049     gbest29.seq
 227667686     gbest3.seq
 186667347     gbest30.seq
 200034043     gbest31.seq
 211858650     gbest32.seq
 212353684     gbest33.seq
 212980215     gbest34.seq
 215392564     gbest35.seq
 230688353     gbest36.seq
 230688590     gbest37.seq
 230688814     gbest38.seq
 230690686     gbest39.seq
 230688611     gbest4.seq
 230687600     gbest40.seq
 230688707     gbest41.seq
 230690268     gbest42.seq
 230687749     gbest43.seq
 230690624     gbest44.seq
 230689569     gbest45.seq
 230689886     gbest46.seq
 226666903     gbest47.seq
 230689488     gbest48.seq
 225686463     gbest49.seq
 161067801     gbest5.seq
 213192436     gbest50.seq
 230688390     gbest51.seq
 230689079     gbest52.seq
 230688150     gbest53.seq
 230690024     gbest54.seq
 230689594     gbest55.seq
 230687558     gbest56.seq
 230688544     gbest57.seq
 226925181     gbest58.seq
 228258705     gbest59.seq
 173391011     gbest6.seq
 230690653     gbest60.seq
  69827431     gbest61.seq
 230687759     gbest7.seq
 230688257     gbest8.seq
 230687733     gbest9.seq
  15170707     gbgen.idx
 209718390     gbgss1.seq
 209718581     gbgss10.seq
 209716317     gbgss11.seq
 209716104     gbgss12.seq
 209718398     gbgss13.seq
 209715980     gbgss14.seq
 209717435     gbgss15.seq
 209718286     gbgss16.seq
 209718551     gbgss17.seq
 209716347     gbgss18.seq
 111012412     gbgss19.seq
 209718134     gbgss2.seq
 268174627     gbgss20.seq
 244553627     gbgss21.seq
 236576139     gbgss22.seq
 191031278     gbgss23.seq
 209717097     gbgss3.seq
 209718159     gbgss4.seq
 209716198     gbgss5.seq
 209718708     gbgss6.seq
 209717139     gbgss7.seq
 209716329     gbgss8.seq
 209718023     gbgss9.seq
 212298013     gbhtg1.seq
 141345559     gbhtg10.seq
  88757322     gbhtg11.seq
  87567486     gbhtg12.seq
  89279083     gbhtg13.seq
 104452581     gbhtg14.seq
  94755710     gbhtg15.seq
 101100444     gbhtg16.seq
  95865315     gbhtg17.seq
 102802181     gbhtg18.seq
 104916624     gbhtg19.seq
 223168354     gbhtg2.seq
 104809432     gbhtg20.seq
  91252535     gbhtg21.seq
  93545310     gbhtg22.seq
  99267122     gbhtg23.seq
  88109454     gbhtg24.seq
  85127723     gbhtg25.seq
  82962629     gbhtg26.seq
  83067974     gbhtg27.seq
  84678324     gbhtg28.seq
  95465916     gbhtg29.seq
 210887832     gbhtg3.seq
  99452256     gbhtg30.seq
  87973598     gbhtg31.seq
  84340465     gbhtg32.seq
  84331336     gbhtg33.seq
  89060484     gbhtg34.seq
 102575399     gbhtg35.seq
 103990965     gbhtg36.seq
  89403891     gbhtg37.seq
  95209917     gbhtg38.seq
  84367484     gbhtg39.seq
 212080065     gbhtg4.seq
  77484373     gbhtg40.seq
  78343999     gbhtg41.seq
  83577642     gbhtg42.seq
  81911429     gbhtg43.seq
  80305660     gbhtg44.seq
  57430974     gbhtg45.seq
 211351602     gbhtg5.seq
 245059910     gbhtg6.seq
 303311962     gbhtg7.seq
 155008753     gbhtg8.seq
 161610024     gbhtg9.seq
 256730480     gbinv1.seq
 296270795     gbinv2.seq
  71358938     gbinv3.seq
 247906607     gbjou.idx
 206895546     gbkey.idx
  74635276     gbmam.seq
 239105927     gbpat.seq
  11369089     gbphg.seq
 254332085     gbpln1.seq
 276466043     gbpln2.seq
 131672474     gbpln3.seq
 257880783     gbpri1.seq
 293182867     gbpri2.seq
 353679544     gbpri3.seq
 325181468     gbpri4.seq
 245978258     gbpri5.seq
    106370     gbrel.txt
 230264992     gbrod.seq
 566289590     gbsdr.txt
 310172396     gbsts.seq
  20489806     gbsyn.seq
   3008297     gbuna.seq
 169539342     gbvrl1.seq
 141171729     gbvrl2.seq
 128421727     gbvrt.seq

2.2.6 Per-Division Statistics 

  The following table provides a per-division breakdown of the number of
sequence entries and the total number of bases of DNA/RNA in each sequence
data file:

Division     Entries    Bases

BCT1         45468      96406547
BCT2         35650      95178587
EST1         68608      26482832
EST10        77250      30021157
EST11        75482      28910691
EST12        77881      30838647
EST13        76906      29223811
EST14        77931      31431140
EST15        74567      31485737
EST16        75662      33166792
EST17        83110      34202987
EST18        80550      32193589
EST19        78510      31953209
EST2         74342      28517993
EST20        74449      30337316
EST21        74172      34364417
EST22        75998      30513796
EST23        77428      32441450
EST24        76095      34002817
EST25        72439      30760379
EST26        76223      31676884
EST27        77111      33208858
EST28        103595     48001182
EST29        71363      20851114
EST3         73499      29812290
EST30        69093      17747149
EST31        75858      21846025
EST32        43683      11139614
EST33        43566      10683256
EST34        43140      11082051
EST35        46236      12669636
EST36        87932      39272214
EST37        75208      32286663
EST38        68950      30657782
EST39        71056      30807078
EST4         74662      28420112
EST40        74437      31247396
EST41        83399      33021774
EST42        71222      27432876
EST43        66671      30620497
EST44        75209      32312411
EST45        78154      38449564
EST46        75893      35227675
EST47        73409      25847747
EST48        80710      32648465
EST49        71326      30394841
EST5         47745      15154034
EST50        42768      10987242
EST51        72674      31688044
EST52        81135      29101861
EST53        118939     42817714
EST54        83450      27573893
EST55        72507      25694062
EST56        74273      27449634
EST57        73134      26647177
EST58        79543      26939391
EST59        72810      26857117
EST6         54262      17145239
EST60        68913      29502411
EST61        27522      8864430
EST7         75054      29506468
EST8         75993      30674975
EST9         77995      30186121
GSS1         84017      35086866
GSS10        66377      37711269
GSS11        71584      37798099
GSS12        63247      33661284
GSS13        69423      36370825
GSS14        68710      33919082
GSS15        66800      29785816
GSS16        67207      33967339
GSS17        71434      42612584
GSS18        78623      37935960
GSS19        44406      19648023
GSS2         83166      36641679
GSS20        104331     67541443
GSS21        77269      61285084
GSS22        68837      58005552
GSS23        55709      50371650
GSS3         84272      39193892
GSS4         74318      38425252
GSS5         72842      38773774
GSS6         70529      35114417
GSS7         73417      36985249
GSS8         71344      36468719
GSS9         69236      34340742
HTG1         1085       162251703
HTG10        813        105196322
HTG11        423        67323289
HTG12        402        66934791
HTG13        406        67967393
HTG14        531        78542129
HTG15        464        71459248
HTG16        516        76208571
HTG17        6586       62632964
HTG18        3428       73138979
HTG19        8730       65879060
HTG2         1056       169448519
HTG20        12527      59862363
HTG21        3420       64774449
HTG22        5860       62702619
HTG23        580        73594001
HTG24        421        66735443
HTG25        428        65131684
HTG26        462        63890226
HTG27        491        64068492
HTG28        481        65080921
HTG29        474        71767621
HTG3         1024       160623371
HTG30        511        74597631
HTG31        399        66465145
HTG32        374        64231822
HTG33        365        63944898
HTG34        425        67154368
HTG35        517        77322259
HTG36        2817       74877338
HTG37        1454       66338197
HTG38        442        72502563
HTG39        385        64341297
HTG4         998        162324824
HTG40        410        58605782
HTG41        399        59274529
HTG42        407        63765909
HTG43        355        63243625
HTG44        354        61488979
HTG45        262        43753862
HTG5         968        160593771
HTG6         1207       186020236
HTG7         5115       224818475
HTG8         1447       114906629
HTG9         1105       117922921
INV1         34883      122663989
INV2         25799      171685372
INV3         6856       39582349
MAM          24742      21988274
PAT          201544     64034109
PHG          1568       4247899
PLN1         53838      108719476
PLN2         39175      125192708
PLN3         18880      66263924
PRI1         44773      128379482
PRI2         34198      161402458
PRI3         16329      226606327
PRI4         21934      202424116
PRI5         8774       169659011
ROD          56409      87896257
STS          115296     50587381
SYN          3785       9376863
UNA          1789       956972
VRL1         52429      46182443
VRL2         42000      36159651
VRT          41248      38270240

2.2.7 Selected Per-Organism Statistics 

  The following table provides the number of entries and bases of DNA/RNA for
the twenty most sequenced organisms in Release 118.0 (chloroplast and mitochon-
drial sequences not included):

Entries      Bases   Species

3130714 5529098978   Homo sapiens
1280769  644578145   Mus musculus
152708   483120591   Drosophila melanogaster
119138   208153636   Arabidopsis thaliana
106370   199696027   Caenorhabditis elegans
173992   150708315   Tetraodon nigroviridis
148624    98978152   Oryza sativa
142597    69613881   Rattus norvegicus
77509     47524643   Strongylocentrotus purpuratus
44226     38669845   Giardia intestinalis
75153     38608044   Lycopersicon esculentum
88598     37915170   Glycine max
76673     36676730   Danio rerio
18322     32758536   Saccharomyces cerevisiae
64833     31415602   Zea mays
67291     29281140   Rattus sp.
47852     28193150   Trypanosoma brucei
53655     22626752   Bos taurus
42668     21214394   Fugu rubripes
41458     19961170   Human immunodeficiency virus type 1

2.2.8 Growth of GenBank

  The following table lists the number of bases and the number of sequence
records in each release of GenBank, beginning with Release 3 in 1982.
Over the period 1982 to the present, the number of bases in GenBank
has doubled approximately every 14 months.


Release      Date     Base Pairs   Entries

    3    Dec 1982         680338       606
   14    Nov 1983        2274029      2427
   20    May 1984        3002088      3665
   24    Sep 1984        3323270      4135
   25    Oct 1984        3368765      4175
   26    Nov 1984        3689752      4393
   32    May 1985        4211931      4954
   36    Sep 1985        5204420      5700
   40    Feb 1986        5925429      6642
   42    May 1986        6765476      7416
   44    Aug 1986        8442357      8823
   46    Nov 1986        9615371      9978
   48    Feb 1987       10961380     10913
   50    May 1987       13048473     12534
   52    Aug 1987       14855145     14020
   53    Sep 1987       15514776     14584
   54    Dec 1987       16752872     15465
   55    Mar 1988       19156002     17047
   56    Jun 1988       20795279     18226
   57    Sep 1988       22019698     19044
   57.1  Oct 1988       23800000     20579
   58    Dec 1988       24690876     21248
   59    Mar 1989       26382491     22479
   60    Jun 1989       31808784     26317
   61    Sep 1989       34762585     28791
   62    Dec 1989       37183950     31229
   63    Mar 1990       40127752     33377
   64    Jun 1990       42495893     35100
   65    Sep 1990       49179285     39533
   66    Dec 1990       51306092     41057
   67    Mar 1991       55169276     43903
   68    Jun 1991       65868799     51418
   69    Sep 1991       71947426     55627
   70    Dec 1991       77337678     58952
   71    Mar 1992       83894652     65100
   72    Jun 1992       92160761     71280
   73    Sep 1992      101008486     78608
   74    Dec 1992      120242234     97084
   75    Feb 1993      126212259    106684
   76    Apr 1993      129968355    111911
   77    Jun 1993      138904393    120134
   78    Aug 1993      147215633    131328
   79    Oct 1993      157152442    143492
   80    Dec 1993      163802597    150744
   81    Feb 1994      173261500    162946
   82    Apr 1994      180589455    169896
   83    Jun 1994      191393939    182753
   84    Aug 1994      201815802    196703
   85    Oct 1994      217102462    215273
   86    Dec 1994      230485928    237775
   87    Feb 1995      248499214    269478
   88    Apr 1995      286094556    352414
   89    Jun 1995      318624568    425211
   90    Aug 1995      353713490    492483
   91    Oct 1995      384939485    555694
   92    Dec 1995      425860958    620765
   93    Feb 1996      463758833    685693
   94    Apr 1996      499127741    744295
   95    Jun 1996      551750920    835487
   96    Aug 1996      602072354    920588
   97    Oct 1996      651972984    1021211
   98    Dec 1996      730552938    1114581
   99    Feb 1997      786898138    1192505
   100   Apr 1997      842864309    1274747
   101   Jun 1997      966993087    1491069
   102   Aug 1997     1053474516    1610848
   103   Oct 1997     1160300687    1765847
   104   Dec 1997     1258290513    1891953
   105   Feb 1998     1372368913    2042325
   106   Apr 1998     1502542306    2209232
   107   Jun 1998     1622041465    2355928
   108   Aug 1998     1797137713    2532359
   109   Oct 1998     2008761784    2837897
   110   Dec 1998     2162067871    3043729
   111   Apr 1999     2569578208    3525418
   112   Jun 1999     2974791993    4028171
   113   Aug 1999     3400237391    4610118
   114   Oct 1999     3841163011    4864570
   115   Dec 1999     4653932745    5354511
   116   Feb 2000     5805414935    5691170
   117   Apr 2000     7376080723    6215002
   118   Jun 2000     8604221980    7077491

3. FILE FORMATS

  The flat file examples included in this section, while not always from the
current release, are usually fairly recent.  Any differences compared to the
actual records are the result of updates to the entries involved.

3.1 File Header Information

  Each of the 159 files of a GenBank release begins with the
same header, except for the first line, which contains the file name,
and the sixth line, which contains the title of the file. The first
line of the file contains the file name in character positions 1 to 9
and the full data bank name (Genetic Sequence Data Bank) starting in
column 20. The brief names of the files in this release are listed in
section 2.2.

  The second line contains the date of the current release in the form
`day month year', beginning in position 26. The fourth line contains
the current GenBank release number. The release number appears in
positions 41 to 45 and consists of two numbers separated by a decimal
point. The number to the left of the decimal is the major release
number. The digit to the right of the decimal indicates the version of
the major release; it is zero for the first version. The sixth line
contains a title for the file. The eighth line lists the number of
entries (loci), number of bases (or base pairs), and number of reports
of sequences (equal to number of entries in this case). These numbers are
right-justified at fixed positions. The number of entries appears in
positions 1 to 7, the number of bases in positions 15 to 23, and the
number of reports in positions 37 to 40. (There are more reports of
sequences than entries since reported sequences that overlap or
duplicate each other are combined into single entries.) The third,
fifth, seventh, and ninth lines are blank.

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
GBACC.IDX          Genetic Sequence Data Bank
                         15 December 1993

                 GenBank Flat File Release 80.0

                      Accession Number Index

  150744 loci, 163802597 bases, from 150744 reported sequences
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 1. Sample File Header


3.2 Directory Files

3.2.1 Short Directory File

  The short directory file contains brief descriptions of all of the
sequence entries contained in this release. These descriptions are in
fifteen groups, one group for each of the fifteen sequence entry
data files. The first record at the beginning of a group of entries
contains the name of the group in uppercase characters, beginning in
position 21. The organism groups are PRIMATE, RODENT, OTHER MAMMAL,
OTHER VERTEBRATE, INVERTEBRATE, PLANT, BACTERIAL, STRUCTURAL RNA, VIRAL,
PHAGE, SYNTHETIC, UNANNOTATED, EXPRESSED SEQUENCE TAG, PATENT, or
SEQUENCE TAGGED SITE.  The second record is blank.

  Each record in the short directory contains the sequence entry name
(LOCUS) in the first 12 positions, followed by a brief definition of
the sequence beginning in column 13. The definition is truncated (at
the end of a word) to leave room at the right margin for at least one
space, the sequence length, and the letters `bp'. The length of the
sequence is printed right-justified to column 77, followed by the
letters `bp' in columns 78 and 79. The next-to-last record for a group
has `ZZZZZZZZZZ' in its first ten positions (where the entry name
would normally appear). The last record is a blank line. An example of
the short directory file format, showing the descriptions of the last
entries in the Other Vertebrate sequence data file and the first
entries of the Invertebrate sequence data file, is reproduced below:

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
ZEFWNT1G3   B.rerio wnt-1 gene (exon 3) for wnt-1 protein.                266bp
ZEFWNT1G4   B.rerio wnt-1 gene (exon 4) for wnt-1 protein.                647bp
ZEFZF54     Zebrafish homeotic gene ZF-54.                                246bp
ZEFZFEN     Zebrafish engrailed-like homeobox sequence.                   327bp
ZZZZZZZZZZ
 
                    INVERTEBRATE

AAHAV33A    Acanthocheilonema viteae pepsin-inhibitor-like-protein       1048bp
ACAAC01     Acanthamoeba castelani gene encoding actin I.                1571bp
ACAACTPH    Acanthamoeba castellanii actophorin mRNA, complete cds.       671bp
ACAMHCA     A.castellanii non-muscle myosin heavy chain gene, partial    5894bp
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79
Example 2. Short Directory File


3.3 Index Files

There are five files containing indices to the entries in this release:

 Accession number index file
 Keyword phrase index file
 Author name index file
 Journal citation index file
 Gene name index file

  The index keys (accession numbers, keywords, authors, journals, and
gene symbols.) of an index are sorted alphabetically. (The index keys
for the keyword phrases and author names appear in uppercase
characters even though they appear in mixed case in the sequence
entries.) Under each index key, the names of the sequence entries
containing that index key are listed alphabetically. Each sequence
name is also followed by its data file division and primary accession
number. The following codes are used to designate the data file
divisions:

 1. PRI - primate sequences
 2. ROD - rodent sequences
 3. MAM - other mammalian sequences
 4. VRT - other vertebrate sequences
 5. INV - invertebrate sequences
 6. PLN - plant, fungal, and algal sequences
 7. BCT - bacterial sequences
 8. VRL - viral sequences
 9. PHG - bacteriophage sequences
10. SYN - synthetic sequences
11. UNA - unannotated sequences
12. EST - EST sequences (expressed sequence tags) 
13. PAT - patent sequences
14. STS - STS sequences (sequence tagged sites) 
15. GSS - GSS sequences (genome survey sequences) 
16. HTG - HTGS sequences (high throughput genomic sequences) 

  The index key begins in column 1 of a record. An 11-character field
for the sequence entry name starts in position 14 of a record,
followed by a 3-character field for the data file division, starting
at position 25 and ending at position 27, and a 6-character field for
the primary accession number, starting at position 29 and ending at
position 34. All entries in the fields are left-justified.

  Beginning at positions 36 and 58, the three fields repeat, so three
sets of sequence information can appear in one record. If there are
more than three entry names, the next records are used; the index key
is not repeated. For the accession number files, the entry names begin
in the same record as the index key, since the key is always less than
12 characters. In the other index files, the entry names begin on the
record following the index key record.

NOTE: The column positions stated above will be shifted to the
right if primary accessions in the 8-character format are present.

3.3.1 Accession Number Index File

  Accession numbers are unique six character or eight-character alphanumeric
identifiers of GenBank database entries. The six-character accession
number format consists of a single uppercase letter, followed by 5 digits.
The eight-character accession number format consists of two uppercase
letters, followed by 6 digits.  Accessions provide an unchanging identifier
for the data with which they are associated, and we encourage you to cite
accession numbers whenever you refer to data from GenBank.

  GenBank entries can have both 'primary' and 'secondary' accessions
associated with them (see Section 3.5.6).

  The following excerpt from the accession number index file illustrates
the format of the index:

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
J00316       HUMTBB11P  PRI J00316
J00317       HUMTBB46P  PRI J00317
J00318       HUMUG1     PRI J00318
J00319       HUMUG1PA   PRI J00319
J00320       HUMVIPMR1  PRI L00154 HUMVIPMR2  PRI L00155 HUMVIPMR3  PRI L00156
             HUMVIPMR4  PRI L00157 HUMVIPMR5  PRI L00158
J00321       BABA1AT    PRI J00321
J00322       CHPRSA     PRI J00322
J00323       AGMRSASPC  PRI J00323
J00324       BABATIII   PRI J00324
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 4. Accession Number Index File

  If the same accession number is found in more than one entry (a result
of the infrequent occasions when a single entry is split into two or
more separate entries), then the additional entries and groups in
which the number appears are also given. In the example above, J00320
is a secondary accession, appearing on 5 other database entries.

3.3.2 Keyword Phrase Index File

  Keyword phrases consist of names for gene products and other
characteristics of sequence entries. There are approximately 18,000
keyword phrases. An excerpt from the keyword phrase index file is
shown below:

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
DNA HELICASE
             ECOHELIV   BCT J04726 ECOUVRD    BCT X00738 FPLTRAX    BCT M38047
             HS2ULL     VRL D10470 HSECOMGEN  VRL M86664 PT4DDA     PHG M93048
             SYNPMMB190 SYN M37846 YSPRHP3    PLN X64583
DNA HELICASE I
             ECOPTRAI5  BCT X57430
DNA HELICASE II
             ECOUVRD2   BCT D00069 HEAMUTB1A  BCT M99049
DNA INVERSION SYSTEM
             ECOP15BG   BCT X62121
DNA INVERTASE
             ECOPIN     BCT K00676 ECOPIN1    BCT X01805 PMUGINMOM  PHG V01463
             STABINR3   BCT X16298 STAINVSA   BCT M36694
DNA J HEATSHOCK PROTEIN
             MSGDNAJHSP BCT M95576
DNA LIGASE
             ECOLIG     BCT M24278 ECOLIGA    BCT M30255 PT4G30     PHG X00039
             PT6LIG55   PHG M38465 TTHDNALGS  BCT M74792 TTHDNALIG  BCT M36417
             VACCDNLIG  VRL X16512 VACRHF     VRL D11079 YSCCDC9    PLN X03246
             YSPCDC17   PLN X05107 ZMOLIG     BCT Z11910
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 5. Keyword Phrase Index File


3.3.3 Author Name Index File

The author name index file lists all of the author names that appear
in the citations. An excerpt from the author name index file is shown
below:

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
JACKSON,D.I.
             RATLCAG1   ROD M18349 RATLCAG2   ROD M18348 RATLCAG3   ROD M18347
             RATLCAI    ROD M25820 RATLCAII   ROD M25821 RATLCAIII  ROD M25822
             RATLCAIV   ROD M25823 RATLCAR    ROD Y00065
JACKSON,F.R.
             DRO16883C  INV X62939 DRO1688ED  INV X62938 DRO1688EP  INV X62937
             DROPER     INV M11969 DROPES     INV X03636 MUSPER     ROD M12039
             MUSURFPER  ROD X02966
JACKSON,I.J.
             MUSHOMA    ROD X03033 MUSNEORP8R ROD X54812 MUSP7H2    ROD X54811
             MUSRPT     ROD M69041 MUSSOFI    ROD X63350 MUSTRP15   ROD X59513
             MUSTYRP2   ROD X63349
JACKSON,I.M.
             RATTRH     ROD M12138
JACKSON,J.
             DROFPS85D  INV X52844 MUSIGKAC3  ROD K00885 MUSIL4RA   ROD M27959
             MUSIL4RB   ROD M27960 RABGLOBCON MAM L05833 RABGLOBHSB MAM L05835
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 6. Author Name Index File


3.3.4 Journal Citation Index File

  The journal citation index file lists all of the citations that appear
in the references. All citations are truncated to 80 characters. An
excerpt from the citation index file is shown below:

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
(IN) THE IMMUNE SYSTEM:  132-138, S. KARGER, NEW YORK (1981)
             HUMIGHVX   PRI M35415
(IN) THE LENS: TRANSPARANCY AND CATARACT:  171-179, EURAGE, RIJSWIJK (1986)
             RANCRYG2A  VRT K02264 RANCRYG4A  VRT K02266 RANCRYG5A  VRT M22529
             RANCRYG6A  VRT M22530 RANCRYR    VRT X00659
(IN) THIOREDOXIN AND GLUTAREDOXIN SYSTEMS: STRUCTURE AND FUNCTION: 11-19, UNKNOW
             ECOTRXA1   BCT M54881
(IN) UCLA SYMP. MOL. CELL. BIOL. NEW SER., VOL. 77:  339-352, ALAN R. LISS, INC.
             BOVTRNB2A  MAM M36431 HUMTRNB    PRI M36429 HUMTRNB1   PRI M36430
(IN) UCLA SYMPOSIA:  575-584, ALAN R. LISS, INC., NEW YORK (1987)
             PFAHGPRT   INV M54896
(IN) VIRUS RESEARCH. PROCEEDINGS OF 1973 ICN-UCLA SYMPOSIUM:  533-544, ACADEMIC
             LAMCG      PHG J02459
ACTA BIOCHIM. BIOPHYS. SIN. 23, 246-253 (1992)
             HUMPLASINS PRI M98056
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 7. Journal Citation Index File


3.3.5 Gene Name Index

  The /gene qualifiers of many GenBank entries contain values other than
official gene symbols, such as the product or the standard name of the gene.
Hence, NCBI has chosen to build an index (gbgen.idx) more like a keyword index
for this field, using both the GenBank /gene qualifier and the 'Gene.locus'
fields from the NCBI internal database as keys. An excerpt from the gene name
index file is shown below:

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
SUPPRESSOR OF SABLE
             DROSUSG    INV M57889
SUPPRESSOR TWO OF ZESTE
             DROS2ZSTG  INV X56798
SUPRESSOR TWO OF ZESTE
             DROS2ZSTM  INV X56799
SUR
             CHKSRVCNTK VRT M57290
SURC
             ARFSURCG   BCT X63435
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 8. Gene Name Index File


3.4 Sequence Entry Files

  GenBank releases contain forty-four sequence entry data files, one
for each "division" of GenBank.

3.4.1 File Organization

  Each of these files has the same format and consists of two parts:
header information (described in section 3.1) and sequence entries for
that division (described in the following sections).

3.4.2  Entry Organization

  In the second portion of a sequence entry file (containing the
sequence entries for that division), each record (line) consists of
two parts. The first part is found in positions 1 to 10 and may
contain:

1. A keyword, beginning in column 1 of the record (e.g., REFERENCE is
a keyword).

2. A subkeyword beginning in column 3, with columns 1 and 2 blank
(e.g., AUTHORS is a subkeyword of REFERENCE).

3. Blank characters, indicating that this record is a continuation of
the information under the keyword or subkeyword above it.

4. A code, beginning in column 6, indicating the nature of an entry
(feature key) in the FEATURES table; these codes are described in
Section 3.4.12.1 below.

5. A number, ending in column 9 of the record. This number occurs in
the portion of the entry describing the actual nucleotide sequence and
designates the numbering of sequence positions.

6. Two slashes (//) in positions 1 and 2, marking the end of an entry.

  The second part of each sequence entry record contains the information
appropriate to its keyword, in positions 13 to 80 for keywords and
positions 11 to 80 for the sequence.

  The following is a brief description of each entry field. Detailed
information about each field may be found in Sections 3.4.4 to 3.4.14.

LOCUS	- A short mnemonic name for the entry, chosen to suggest the
sequence's definition. Mandatory keyword/exactly one record.

DEFINITION	- A concise description of the sequence. Mandatory
keyword/one or more records.

ACCESSION	- The primary accession number is a unique, unchanging
code assigned to each entry. (Please use this code when citing
information from GenBank.) Mandatory keyword/one or more records.

VERSION		- A compound identifier consisting of the primary
accession number and a numeric version number associated with the
current version of the sequence data in the record. This is followed
by an integer key (a "GI") assigned to the sequence by NCBI.
Mandatory keyword/exactly one record.

NID		- An alternative method of presenting the NCBI GI
identifier (described above). The NID is obsolete and was removed
from the GenBank flatfile format in December 1999.

KEYWORDS	- Short phrases describing gene products and other
information about an entry. Mandatory keyword in all annotated
entries/one or more records.

SEGMENT	- Information on the order in which this entry appears in a
series of discontinuous sequences from the same molecule. Optional
keyword (only in segmented entries)/exactly one record.

SOURCE	- Common name of the organism or the name most frequently used
in the literature. Mandatory keyword in all annotated entries/one or
more records/includes one subkeyword.

   ORGANISM	- Formal scientific name of the organism (first line)
and taxonomic classification levels (second and subsequent lines).
Mandatory subkeyword in all annotated entries/two or more records.

REFERENCE	- Citations for all articles containing data reported
in this entry. Includes four subkeywords and may repeat. Mandatory
keyword/one or more records.

   AUTHORS	- Lists the authors of the citation. Mandatory
subkeyword/one or more records.

   TITLE	- Full title of citation. Optional subkeyword (present
in all but unpublished citations)/one or more records.

   JOURNAL	- Lists the journal name, volume, year, and page
numbers of the citation. Mandatory subkeyword/one or more records.

   MEDLINE	- Provides the Medline unique identifier for a
citation. Optional subkeyword/one record.

   REMARK	- Specifies the relevance of a citation to an
entry. Optional subkeyword/one or more records.

COMMENT	- Cross-references to other sequence entries, comparisons to
other collections, notes of changes in LOCUS names, and other remarks.
Optional keyword/one or more records/may include blank records.

FEATURES	- Table containing information on portions of the
sequence that code for proteins and RNA molecules and information on
experimentally determined sites of biological significance. Optional
keyword/one or more records.

BASE COUNT	- Summary of the number of occurrences of each base
code in the sequence. Mandatory keyword/exactly one record.

ORIGIN	- Specification of how the first base of the reported sequence
is operationally located within the genome. Where possible, this
includes its location within a larger genetic map. Mandatory
keyword/exactly one record.

	- The ORIGIN line is followed by sequence data (multiple records).

// 	- Entry termination symbol. Mandatory at the end of an
entry/exactly one record.

3.4.3 Sample Sequence Data File

  An example of a complete sequence entry file follows. (This example
has only two entries.) Note that in this example, as throughout the
data bank, numbers in square brackets indicate items in the REFERENCE
list. For example, in ACARR58S, [1] refers to the paper by Mackay, et
al.

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
GBSMP.SEQ          Genetic Sequence Data Bank
                         15 December 1992

                 GenBank Flat File Release 74.0

                     Structural RNA Sequences

      2 loci,       236 bases, from     2 reported sequences

LOCUS       AAURRA        118 bp ss-rRNA            RNA       16-JUN-1986
DEFINITION  A.auricula-judae (mushroom) 5S ribosomal RNA.
ACCESSION   K03160
VERSION     K03160.1  GI:173593
KEYWORDS    5S ribosomal RNA; ribosomal RNA.
SOURCE      A.auricula-judae (mushroom) ribosomal RNA.
  ORGANISM  Auricularia auricula-judae
            Eukaryota; Fungi; Eumycota; Basidiomycotina; Phragmobasidiomycetes;
            Heterobasidiomycetidae; Auriculariales; Auriculariaceae.
REFERENCE   1  (bases 1 to 118)
  AUTHORS   Huysmans,E., Dams,E., Vandenberghe,A. and De Wachter,R.
  TITLE     The nucleotide sequences of the 5S rRNAs of four mushrooms and
            their use in studying the phylogenetic position of basidiomycetes
            among the eukaryotes
  JOURNAL   Nucleic Acids Res. 11, 2871-2880 (1983)
FEATURES             Location/Qualifiers
     rRNA            1..118
                     /note="5S ribosomal RNA"
BASE COUNT       27 a     34 c     34 g     23 t
ORIGIN      5' end of mature rRNA.
        1 atccacggcc ataggactct gaaagcactg catcccgtcc gatctgcaaa gttaaccaga
       61 gtaccgccca gttagtacca cggtggggga ccacgcggga atcctgggtg ctgtggtt
//
LOCUS       ABCRRAA       118 bp ss-rRNA            RNA       15-SEP-1990
DEFINITION  Acetobacter sp. (strain MB 58) 5S ribosomal RNA, complete sequence.
ACCESSION   M34766
VERSION     M34766.1  GI:173603
KEYWORDS    5S ribosomal RNA.
SOURCE      Acetobacter sp. (strain MB 58) rRNA.
  ORGANISM  Acetobacter sp.
            Prokaryotae; Gracilicutes; Scotobacteria; Aerobic rods and cocci;
            Azotobacteraceae.
REFERENCE   1  (bases 1 to 118)
  AUTHORS   Bulygina,E.S., Galchenko,V.F., Govorukhina,N.I., Netrusov,A.I.,
            Nikitin,D.I., Trotsenko,Y.A. and Chumakov,K.M.
  TITLE     Taxonomic studies of methylotrophic bacteria by 5S ribosomal RNA
            sequencing
  JOURNAL   J. Gen. Microbiol. 136, 441-446 (1990)
FEATURES             Location/Qualifiers
     rRNA            1..118
                     /note="5S ribosomal RNA"
BASE COUNT       27 a     40 c     32 g     17 t      2 others
ORIGIN      
        1 gatctggtgg ccatggcggg agcaaatcag ccgatcccat cccgaactcg gccgtcaaat
       61 gccccagcgc ccatgatact ctgcctcaag gcacggaaaa gtcggtcgcc gccagayy
//
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 9. Sample Sequence Data File


3.4.4 LOCUS Format

  The pieces of information contained in the LOCUS record are always
found in fixed positions. The locus name (or entry name), which is
always ten characters or less, begins in position 13. The locus name
is designed to help group entries with similar sequences: the first
three characters usually designate the organism; the fourth and fifth
characters can be used to show other group designations, such as gene
product; for segmented entries the last character is one of a series
of sequential integers.

  The number of bases or base pairs in the sequence ends in position 29.
The letters `bp' are in positions 31 to 32. Positions 34 to 36 give
the number of strands of the sequence. Positions 37 to 40 give the
topology of molecule sequenced. If the sequence is of a special type,
a notation (such as `circular') is included in positions 43 to 52.

  GenBank sequence entries are divided among sixteen different
divisions. Each entry's division is specified by a three-letter code
in positions 53 to 55. See Section 3.3 for an explanation of division
codes.

  Positions 63 to 73 of the record contain the date the entry was
entered or underwent any substantial revisions, such as the addition
of newly published data, in the form dd-MMM-yyyy.

The detailed format for the LOCUS record is as follows:

Positions   	Contents

1-12	LOCUS
13-22	Locus name
23-29	Length of sequence, right-justified
31-32	bp
34-36	Blank, ss- (single-stranded), ds- (double-stranded), or
	 ms- (mixed-stranded)
37-40	Blank, DNA, RNA, tRNA (transfer RNA), rRNA (ribosomal RNA), 
	mRNA (messenger RNA), or uRNA (small nuclear RNA)
43-52	Blank (implies linear) or circular
53-55	The division code (see Section 3.3)
63-73	Date, in the form dd-MMM-yyyy (e.g., 15-MAR-1991)

3.4.5 DEFINITION Format

  The DEFINITION record gives a brief description of the sequence,
proceeding from general to specific. It starts with the common name of
the source organism, then gives the criteria by which this sequence is
distinguished from the remainder of the source genome, such as the
gene name and what it codes for, or the protein name and mRNA, or some
description of the sequence's function (if the sequence is
non-coding). If the sequence has a coding region, the description may
be followed by a completeness qualifier, such as cds (complete coding
sequence). There is no limit on the number of lines that may be part
of the DEFINITION.  The last line must end with a period.

3.4.5.1 DEFINITION Format for NLM Entries

  The DEFINITION line for entries derived from journal-scanning at the NLM is
an automatically generated descriptive summary that accompanies each DNA and
protein sequence. It contains information derived from fields in a database 
that summarize the most important attributes of the sequence.  The DEFINITION
lines are designed to supplement the accession number and the sequence itself
as a means of uniquely and completely specifying DNA and protein sequences. The
following are examples of NLM DEFINITION lines:

NADP-specific isocitrate dehydrogenase [swine, mRNA, 1 gene, 1585 nt]

94 kda fiber cell beaded-filament structural protein [rats, lens, mRNA
Partial, 1 gene, 1873 nt]

inhibin alpha {promoter and exons} [mice, Genomic, 1 gene, 1102 nt, segment
1 of 2]

cefEF, cefG=acetyl coenzyme A:deacetylcephalosporin C o-acetyltransferase
[Acremonium chrysogenum, Genomic, 2 genes, 2639 nt]

myogenic factor 3, qmf3=helix-loop-helix protein [Japanese quails,
embryo, Peptide Partial, 246 aa]


  The first part of the definition line contains information describing
the genes and proteins represented by the molecular sequences.  This can
be gene locus names, protein names and descriptions that replace or augment
actual names.  Gene and gene product are linked by "=".  Any special
identifying terms are presented within brackets, such as: {promoter},
{N-terminal}, {EC 2.13.2.4}, {alternatively spliced}, or {3' region}.

  The second part of the definition line is delimited by square brackets, '[]',
and provides details about the molecule type and length.  The biological
source, i.e., genus and species or common name as cited by the author.
Developmental stage, tissue type and strain are included if available.
The molecule types include: Genomic, mRNA, Peptide. and Other Genomic
Material. Genomic molecules are assumed to be partial sequence unless
"Complete" is specified, whereas mRNA and peptide molecules are assumed
to be complete unless "Partial" is noted.

3.4.6 ACCESSION Format

  This field contains a series of six-character and/or eight-character
identifiers called 'accession numbers'. The six-character accession
number format consists of a single uppercase letter, followed by 5 digits.
The eight-character accession number format consists of two uppercase
letters, followed by 6 digits. The 'primary', or first, of the accession
numbers occupies positions 13 to 18 (6-character format) or positions
13 to 20 (8-character format). Subsequent 'secondary' accession numbers
(if present) are separated from the primary, and from each other, by a
single space. In some cases, multiple lines of secondary accession
numbers might be present, starting at position 13.

  The primary accession number of a GenBank entry provides a stable identifier
for the biological object that the entry represents. Accessions do not change
when the underlying sequence data or associated features change.

  Secondary accession numbers arise for a number of reasons. For example, a
single accession number may initially be assigned to a sequence described in
a publication. If it is later discovered that the sequence must be entered
into the database as multiple entries, each entry would receive a new primary
accession number, and the original accession number would appear as a secondary
accession number on each of the new entries.

3.4.7 VERSION Format

  This line contains two types of identifiers for a GenBank database entry:
a compound accession number and an NCBI GI identifier. 

LOCUS       AF181452     1294 bp    DNA             PLN       12-OCT-1999
DEFINITION  Hordeum vulgare dehydrin (Dhn2) gene, complete cds.
ACCESSION   AF181452
VERSION     AF181452.1  GI:6017929
            ^^^^^^^^^^  ^^^^^^^^^^
            Compound    NCBI GI
            Accession   Identifier
            Number

  A compound accession number consists of two parts: a stable, unchanging
primary-accession number portion (see Section 3.4.6 for a description of
accession numbers), and a sequentially increasing numeric version number.
The accession and version numbers are separated by a period. The initial
version number assigned to a new sequence is one. Compound accessions are
often referred to as "Accession.Version" .

  An accession number allows one to retrieve the same biological object in the
database, regardless of any changes that are made to the entry over time. But
those changes can include changes to the sequence data itself, which is of
fundamental importance to many database users. So a numeric version number is
associated with the sequence data in every database entry. If an entry (for
example, AF181452) undergoes two sequence changes, its compound accession
number on the VERSION line would start as AF181452.1 . After the first sequence
change this would become: AF181452.2 . And after the second change: AF181452.3 .

  The NCBI GI identifier of the VERSION line also serves as a method for
identifying the sequence data that has existed for a database entry over
time. GI identifiers are numeric values of one or more digits. Since they
are integer keys, they are less human-friendly than the Accession.Version
system described above. Returning to our example for AF181452, it was
initially assigned GI 6017929. If the sequence changes, a new integer GI will
be assigned, perhaps 7345003 . And after the second sequence change, perhaps
the GI would become 10456892 .

  Why are both these methods for identifying the version of the sequence
associated with a database entry in use? For two reasons:

- Some data sources processed by NCBI for incorporation into its Entrez
  sequence retrieval system do not version their own sequences.

- GIs provide a uniform, integer identifier system for every sequence
  NCBI has processed. Some products and systems derived from (or reliant
  upon) NCBI products and services prefer to use these integer identifiers
  because they can all be processed the same way.

GenBank Releases contain only the most recent versions of all sequences
in the database. However, older versions can be obtained via GI-based or
Accession.Version-based queries with NCBI's web-Entrez and network-Entrez
application. A sequence revision history web page is also available:

	  http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/girevhist

NOTE: All the version numbers for the compound Accession.Version identifier
system were initialized to a value of one in February 1999, when that
system was introduced.

3.4.8 KEYWORDS Format

  The KEYWORDS field does not appear in unannotated entries, but is
required in all annotated entries. Keywords are separated by
semicolons; a "keyword" may be a single word or a phrase consisting of
several words. Each line in the keywords field ends in a semicolon;
the last line ends with a period. If no keywords are included in the
entry, the KEYWORDS record contains only a period.

3.4.9 SEGMENT Format

  The SEGMENT keyword is used when two (or more) entries of known
relative orientation are separated by a short (<10 kb) stretch of DNA.
It is limited to one line of the form `n of m', where `n' is the
segment number of the current entry and `m' is the total number of
segments.

3.4.10 SOURCE Format

  The SOURCE field consists of two parts. The first part is found after
the SOURCE keyword and contains free-format information including an
abbreviated form of the organism name followed by a molecule type;
multiple lines are allowed, but the last line must end with a period.
The second part consists of information found after the ORGANISM
subkeyword. The formal scientific name for the source organism (genus
and species, where appropriate) is found on the same line as ORGANISM.
The records following the ORGANISM line list the taxonomic
classification levels, separated by semicolons and ending with a
period.

3.4.11 REFERENCE Format

  The REFERENCE field consists of five parts: the keyword REFERENCE, and
the subkeywords AUTHORS, TITLE (optional), JOURNAL, MEDLINE (optional),
and REMARK (optional).

  The REFERENCE line contains the number of the particular reference and
(in parentheses) the range of bases in the sequence entry reported in
this citation. Additional prose notes may also be found within the
parentheses. The numbering of the references does not reflect
publication dates or priorities.

  The AUTHORS line lists the authors in the order in which they appear
in the cited article. Last names are separated from initials by a
comma (no space); there is no comma before the final `and'. The list
of authors ends with a period.  The TITLE line is an optional field,
although it appears in the majority of entries. It does not appear in
unpublished sequence data entries that have been deposited directly
into the GenBank data bank, the EMBL Nucleotide Sequence Data Library,
or the DNA Data Bank of Japan. The TITLE field does not end with a
period.

  The JOURNAL line gives the appropriate literature citation for the
sequence in the entry. The word `Unpublished' will appear after the
JOURNAL subkeyword if the data did not appear in the scientific
literature, but was directly deposited into the data bank. For
published sequences the JOURNAL line gives the Thesis, Journal, or
Book citation, including the year of publication, the specific
citation, or In press.

  The MEDLINE line provides the National Library of Medicine's Medline
unique identifier for a citation (if known). Medline UIs are 8 digit
numbers.

  The REMARK line is a textual comment that specifies the relevance
of the citation to the entry.

3.4.12 FEATURES Format

  GenBank releases use a feature table format designed jointly by
GenBank, the EMBL Nucleotide Sequence Data Library, and the DNA Data
Bank of Japan. This format is in use by all three databases. The
most complete and accurate Feature Table documentation can be found
on the Web at:

	http://www.ncbi.nlm.nih.gov/collab/FT/index.html

  Any discrepancy between the abbreviated feature table description
of these release notes and the complete documentation on the Web
should be resolved in favor of the version at the above URL.

  The Feature Table specification is also available as a printed
document: `The DDBJ/EMBL/GenBank Feature Table: Definition'. Contact
GenBank at the address shown on the first page of these Release Notes
if you would like a copy.

  The feature table contains information about genes and gene products,
as well as regions of biological significance reported in the
sequence. The feature table contains information on regions of the
sequence that code for proteins and RNA molecules. It also enumerates
differences between different reports of the same sequence, and
provides cross-references to other data collections, as described in
more detail below.

  The first line of the feature table is a header that includes the
keyword `FEATURES' and the column header `Location/Qualifier.' Each
feature consists of a descriptor line containing a feature key and a
location (see sections below for details). If the location does not
fit on this line, a continuation line may follow. If further
information about the feature is required, one or more lines
containing feature qualifiers may follow the descriptor line.

  The feature key begins in column 6 and may be no more than 15
characters in length. The location begins in column 22. Feature
qualifiers begin on subsequent lines at column 22. Location,
qualifier, and continuation lines may extend from column 22 to 80.

  Feature tables are required, due to the mandatory presence of the
source feature. The sections below provide a brief introduction to
the feature table format.

3.4.12.1 Feature Key Names

  The first column of the feature descriptor line contains the feature
key. It starts at column 6 and can continue to column 20. The list of
valid feature keys is shown below.

  Remember, the most definitive documentation for the feature table can
be found at:

	http://www.ncbi.nlm.nih.gov/collab/FT/index.html

allele		Obsolete; see variation feature key
attenuator	Sequence related to transcription termination
C_region	Span of the C immunological feature
CAAT_signal	`CAAT box' in eukaryotic promoters
CDS		Sequence coding for amino acids in protein (includes
		stop codon)
conflict	Independent sequence determinations differ
D-loop      	Displacement loop
D_segment	Span of the D immunological feature
enhancer	Cis-acting enhancer of promoter function
exon		Region that codes for part of spliced mRNA
gene            Region that defines a functional gene, possibly
                including upstream (promotor, enhancer, etc)
		and downstream control elements, and for which
		a name has been assigned.
GC_signal	`GC box' in eukaryotic promoters
iDNA		Intervening DNA eliminated by recombination
intron		Transcribed region excised by mRNA splicing
J_region	Span of the J immunological feature
LTR		Long terminal repeat
mat_peptide	Mature peptide coding region (does not include stop codon)
misc_binding	Miscellaneous binding site
misc_difference	Miscellaneous difference feature
misc_feature	Region of biological significance that cannot be described
		by any other feature
misc_recomb	Miscellaneous recombination feature
misc_RNA	Miscellaneous transcript feature not defined by other RNA keys
misc_signal	Miscellaneous signal
misc_structure	Miscellaneous DNA or RNA structure
modified_base	The indicated base is a modified nucleotide
mRNA		Messenger RNA
mutation 	Obsolete: see variation feature key
N_region	Span of the N immunological feature
old_sequence	Presented sequence revises a previous version
polyA_signal	Signal for cleavage & polyadenylation
polyA_site	Site at which polyadenine is added to mRNA
precursor_RNA	Any RNA species that is not yet the mature RNA product
prim_transcript	Primary (unprocessed) transcript
primer		Primer binding region used with PCR
primer_bind	Non-covalent primer binding site
promoter	A region involved in transcription initiation
protein_bind	Non-covalent protein binding site on DNA or RNA
RBS		Ribosome binding site
rep_origin	Replication origin for duplex DNA
repeat_region	Sequence containing repeated subsequences
repeat_unit	One repeated unit of a repeat_region
rRNA		Ribosomal RNA
S_region	Span of the S immunological feature
satellite	Satellite repeated sequence
scRNA		Small cytoplasmic RNA
sig_peptide	Signal peptide coding region
snRNA		Small nuclear RNA
source		Biological source of the sequence data represented by
		a GenBank record. Mandatory feature, one or more per record.
		For organisms that have been incorporated within the
		NCBI taxonomy database, an associated /db_xref="taxon:NNNN"
		qualifier will be present (where NNNNN is the numeric
		identifier assigned to the organism within the NCBI taxonomy
		database).
stem_loop	Hair-pin loop structure in DNA or RNA
STS		Sequence Tagged Site; operationally unique sequence that
		identifies the combination of primer spans used in a PCR assay
TATA_signal	`TATA box' in eukaryotic promoters
terminator	Sequence causing transcription termination
transit_peptide	Transit peptide coding region
transposon	Transposable element (TN)
tRNA 		Transfer RNA
unsure		Authors are unsure about the sequence in this region
V_region	Span of the V immunological feature
variation 	A related population contains stable mutation
- (hyphen)	Placeholder
-10_signal	`Pribnow box' in prokaryotic promoters
-35_signal	`-35 box' in prokaryotic promoters
3'clip		3'-most region of a precursor transcript removed in processing
3'UTR		3' untranslated region (trailer)
5'clip		5'-most region of a precursor transcript removed in processing
5'UTR		5' untranslated region (leader)


3.4.12.2 Feature Location

  The second column of the feature descriptor line designates the
location of the feature in the sequence. The location descriptor
begins at position 22. Several conventions are used to indicate
sequence location.

  Base numbers in location descriptors refer to numbering in the entry,
which is not necessarily the same as the numbering scheme used in the
published report. The first base in the presented sequence is numbered
base 1. Sequences are presented in the 5 to 3 direction.

Location descriptors can be one of the following:

1. A single base;

2. A contiguous span of bases;

3. A site between two bases;

4. A single base chosen from a range of bases;

5. A single base chosen from among two or more specified bases;

6. A joining of sequence spans;

7. A reference to an entry other than the one to which the feature
belongs (i.e., a remote entry), followed by a location descriptor
referring to the remote sequence;

8. A literal sequence (a string of bases enclosed in quotation marks).

  A site between two residues, such as an endonuclease cleavage site, is
indicated by listing the two bases separated by a carat (e.g., 23^24).

  A single residue chosen from a range of residues is indicated by the
number of the first and last bases in the range separated by a single
period (e.g., 23.79). The symbols < and > indicate that the end point
of the range is beyond the specified base number.

  A contiguous span of bases is indicated by the number of the first and
last bases in the range separated by two periods (e.g., 23..79). The
symbols < and > indicate that the end point of the range is beyond the
specified base number. Starting and ending positions can be indicated
by base number or by one of the operators described below.

  Operators are prefixes that specify what must be done to the indicated
sequence to locate the feature. The following are the operators
available, along with their most common format and a description.

complement (location): The feature is complementary to the location
indicated. Complementary strands are read 5 to 3.

join (location, location, .. location): The indicated elements should
be placed end to end to form one contiguous sequence.

order (location, location, .. location): The elements are found in the
specified order in the 5 to 3 direction, but nothing is implied about
the rationality of joining them.

group (location, location, .. location): The elements are related and
should be grouped together, but no order is implied.

one-of (location, location, .. location): The element can be any one,
but only one, of the items listed.

3.4.12.3  Feature Qualifiers

  Qualifiers provide additional information about features. They take
the form of a slash (/) followed by a qualifier name and, if
applicable, an equal sign (=) and a qualifier value. Feature
qualifiers begin at column 22.

Qualifiers convey many types of information. Their values can,
therefore, take several forms:

1. Free text;
2. Controlled vocabulary or enumerated values;
3. Citations or reference numbers;
4. Sequences;
5. Feature labels.

  Text qualifier values must be enclosed in double quotation marks. The
text can consist of any printable characters (ASCII values 32-126
decimal). If the text string includes double quotation marks, each set
must be `escaped' by placing a double quotation mark in front of it
(e.g., /note="This is an example of ""escaped"" quotation marks").

  Some qualifiers require values selected from a limited set of choices.
For example, the `/direction' qualifier has only three values `left,'
`right,' or `both.' These are called controlled vocabulary qualifier
values. Controlled qualifier values are not case sensitive; they can
be entered in any combination of upper- and lowercase without changing
their meaning.

  Citation or published reference numbers for the entry should be
enclosed in square brackets ([]) to distinguish them from other
numbers.

  A literal sequence of bases (e.g., "atgcatt") should be enclosed in
quotation marks. Literal sequences are distinguished from free text by
context. Qualifiers that take free text as their values do not take
literal sequences, and vice versa.

  The `/label=' qualifier takes a feature label as its qualifier.
Although feature labels are optional, they allow unambiguous
references to the feature. The feature label identifies a feature
within an entry; when combined with the accession number and the name
of the data bank from which it came, it is a unique tag for that
feature. Feature labels must be unique within an entry, but can be the
same as a feature label in another entry. Feature labels are not case
sensitive; they can be entered in any combination of upper-and
lowercase without changing their meaning.

The following is a partial list of feature qualifiers.

/anticodon	Location of the anticodon of tRNA and the amino acid
		for which it codes

/bound_moiety	Moiety bound

/citation	Reference to a citation providing the claim of or
		evidence for a feature

/codon		Specifies a codon that is different from any found in the
		reference genetic code

/codon_start	Indicates the first base of the first complete codon
		in a CDS (as 1 or 2 or 3)

/cons_splice	Identifies intron splice sites that do not conform to
		the 5'-GT... AG-3' splice site consensus

/db_xref	A database cross-reference; pointer to related information
		in another database. A description of all cross-references
		can be found at:

		http://www.ncbi.nlm.nih.gov/collab/db_xref.html

/direction	Direction of DNA replication

/EC_number	Enzyme Commission number for the enzyme product of the
		sequence

/evidence	Value indicating the nature of supporting evidence

/frequency	Frequency of the occurrence of a feature

/function	Function attributed to a sequence

/gene		Symbol of the gene corresponding to a sequence region (usable
		with all features)

/label		A label used to permanently identify a feature

/map		Map position of the feature in free-format text

/mod_base	Abbreviation for a modified nucleotide base

/note		Any comment or additional information

/number		A number indicating the order of genetic elements
		(e.g., exons or introns) in the 5 to 3 direction

/organism	Name of the organism that is the source of the
		sequence data in the record. 

/partial	Differentiates between complete regions and partial ones

/phenotype	Phenotype conferred by the feature

/product	Name of a product encoded by a coding region (CDS)
		feature

/pseudo		Indicates that this feature is a non-functional
		version of the element named by the feature key

/rpt_family	Type of repeated sequence; Alu or Kpn, for example

/rpt_type	Organization of repeated sequence

/rpt_unit	Identity of repeat unit that constitutes a repeat_region

/standard_name	Accepted standard name for this feature

/transl_except	Translational exception: single codon, the translation
		of which does not conform to the reference genetic code

/translation	Amino acid translation of a coding region

/type		Name of a strain if different from that in the SOURCE field

/usedin		Indicates that feature is used in a compound feature
		in another entry

3.4.12.4 Cross-Reference Information

  One type of information in the feature table lists cross-references to
the annual compilation of transfer RNA sequences in Nucleic Acids
Research, which has kindly been sent to us on CD-ROM by Dr. Sprinzl.
Each tRNA entry of the feature table contains a /note= qualifier that
includes a reference such as `(NAR: 1234)' to identify code 1234 in
the NAR compilation. When such a cross-reference appears in an entry
that contains a gene coding for a transfer RNA molecule, it refers to
the code in the tRNA gene compilation. Similar cross-references in
entries containing mature transfer RNA sequences refer to the
companion compilation of tRNA sequences published by D.H. Gauss and M.
Sprinzl in Nucleic Acids Research.

3.4.12.5 Feature Table Examples

  In the first example a number of key names, feature locations, and
qualifiers are illustrated, taken from different sequences. The first
table entry is a coding region consisting of a simple span of bases
and including a /gene qualifier. In the second table entry, an NAR
cross-reference is given (see the previous section for a discussion of
these cross-references). The third and fourth table entries use the
symbols `<`and `>' to indicate that the beginning or end of the
feature is beyond the range of the presented sequence. In the fifth
table entry, the symbol `^' indicates that the feature is between
bases.

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
     CDS             5..1261
                     /product="alpha-1-antitrypsin precursor"
                     /map="14q32.1"
                     /gene="PI"
     tRNA            1..87
                     /note="Leu-tRNA-CAA (NAR: 1057)"
                     /anticodon=(pos:35..37,aa:Leu)
     mRNA            1..>66
                     /note="alpha-1-acid glycoprotein mRNA"
     transposon      <1..267
                     /note="insertion element IS5"
     misc_recomb     105^106
                     /note="B.subtilis DNA end/IS5 DNA start"
     conflict        258
                     /replace="t"
                     /citation=[2]
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 10. Feature Table Entries


The next example shows the representation for a CDS that spans more
than one entry.

1       10        20        30        40        50        60        70       79
---------+---------+---------+---------+---------+---------+---------+---------
LOCUS       HUMPGAMM1    3688 bp ds-DNA             PRI       15-OCT-1990
DEFINITION  Human phosphoglycerate mutase (muscle specific isozyme) (PGAM-M)
            gene, 5' end.
ACCESSION   M55673 M25818 M27095
KEYWORDS    phosphoglycerate mutase.
SEGMENT     1 of 2
  .
  .
  .
FEATURES             Location/Qualifiers
     CAAT_signal     1751..1755
                     /gene="PGAM-M"
     TATA_signal     1791..1799
                     /gene="PGAM-M"
     exon            1820..2274
                     /number=1
                     /EC_number="5.4.2.1"
                     /gene="PGAM-M"
     intron          2275..2377
                     /number=1
                     /gene="PGAM2"
     exon            2378..2558
                     /number=2
                     /gene="PGAM-M"
  .
  .
  .
//
LOCUS       HUMPGAMM2     677 bp ds-DNA             PRI       15-OCT-1990
DEFINITION  Human phosphoglycerate mutase (muscle specific isozyme) (PGAM-M),
            exon 3.
ACCESSION   M55674 M25818 M27096
KEYWORDS    phosphoglycerate mutase.
SEGMENT     2 of 2
  .
  .
  .
FEATURES             Location/Qualifiers
     exon            255..457
                     /number=3
                     /gene="PGAM-M"
     intron          order(M55673:2559..>3688,<1..254)
                     /number=2
                     /gene="PGAM-M"
     mRNA            join(M55673:1820..2274,M55673:2378..2558,255..457)
                     /gene="PGAM-M"
     CDS             join(M55673:1861..2274,M55673:2378..2558,255..421)
                     /note="muscle-specific isozyme"
                     /gene="PGAM2"
                     /product="phosphoglycerate mutase"
                     /codon_start=1
                     /translation="MATHRLVMVRHGESTWNQENRFCGWFDAELSEKGTEEAKRGAKA
                     IKDAKMEFDICYTSVLKRAIRTLWAILDGTDQMWLPVVRTWRLNERHYGGLTGLNKAE
                     TAAKHGEEQVKIWRRSFDIPPPPMDEKHPYYNSISKERRYAGLKPGELPTCESLKDTI
                     ARALPFWNEEIVPQIKAGKRVLIAAHGNSLRGIVKHLEGMSDQAIMELNLPTGIPIVY
                     ELNKELKPTKPMQFLGDEETVRKAMEAVAAQGKAK"
  .
  .
  .
//
---------+---------+---------+---------+---------+---------+---------+---------
1       10        20        30        40        50        60        70       79

Example 11. Joining Sequences


3.4.13 ORIGIN Format

  The ORIGIN record may be left blank, may appear as `Unreported.' or
may give a local pointer to the sequence start, usually involving an
experimentally determined restriction cleavage site or the genetic
locus (if available). The ORIGIN record ends in a period if it
contains data, but does not include the period if the record is left
empty (in contrast to the KEYWORDS field which contains a period
rather than being left blank).

3.4.14 SEQUENCE Format

  The nucleotide sequence for an entry is found in the records following
the ORIGIN record. The sequence is reported in the 5 to 3 direction.
There are sixty bases per record, listed in groups of ten bases
followed by a blank, starting at position 11 of each record. The
number of the first nucleotide in the record is given in columns 4 to
9 (right justified) of the record.


4. ALTERNATE RELEASES

  NCBI is supplying sequence data in the GenBank flat file format to
maintain compatibility with existing software which require that
particular format.  Although we have made every effort to ensure
that these data are presented in the traditional flat file format,
if you encounter any problems in using these data with software which
is based upon the flat file format, please contact us at:

              [email protected]

  The flat file is just one of many possible report formats that can be
generated from the richer representation supported by the ASN.1 form of the
data.  Developers of new software tools should consider using the ASN.1 form
directly to take advantage of those features.  Documentation and a Software
Developer's Toolkit for ASN.1 are available through NCBI.  You may call NCBI
at (301)496-2475, or subscribe to a developers' electronic newsgroup by
sending your name, address, affiliation, and e-mail address to:

              [email protected]

  The Software Developer's Toolkit and PostScript documentation for UNIX,
VMS, Ultrix, AIX, MacOS, DOS, and Microsoft Windows systems is available
in a compressed UNIX tar file by anonymous ftp from 'ncbi.nlm.nih.gov',
in the toolbox/ncbi_tools directory. The file is 'ncbi.tar.Z'.


5. KNOWN PROBLEMS OF THE GENBANK DATABASE

5.1 Incorrect Gene Symbols in Entries and Index

  The /gene qualifier for many GenBank entries contains values other than the
official gene symbol, such as the product or the standard name of the gene. The
gene symbol index (gbgen.idx) is created from the data in the /gene qualifier
and therefore may contain data other than official gene symbols.


6. GENBANK ADMINISTRATION 

  The National Center for Biotechnology Information (NCBI), National Library
of Medicine, National Institutes of Health, is responsible for the production
and distribution of the NIH GenBank Sequence Database.  NCBI distributes
GenBank sequence data by anonymous FTP, e-mail servers and other
network services.  For more information, you may contact NCBI at the
e-mail address:  [email protected]  or by phone: 301-496-2475.

6.1 Registered Trademark Notice

  GenBank (R) is a registered trademark of the U.S. Department of Health
and Human Services for the Genetic Sequence Data Bank.

6.2 Citing GenBank

  If you have used GenBank in your research, we would appreciate it if
you would include a reference to GenBank in all publications related
to that research.

  When citing data in GenBank, it is appropriate to give the sequence
name, primary accession number, and the publication in which the
sequence first appeared.  If the data are unpublished, we urge you to
contact the group which submitted the data to GenBank to see if there
is a recent publication or if they have determined any revisions or
extensions of the data.

  It is also appropriate to list a reference for GenBank itself.  The
following publication, which describes the GenBank database, should
be cited:

    Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., 
    Wheeler D.L.  GenBank. Nucl. Acids Res. 28(1):15-18 (2000)

  The following statement is an example of how you may cite GenBank
data.  It cites the sequence, its primary accession number, the group
who determined the sequence, and GenBank.  The numbers in parentheses
refer to the GenBank citation above and to the REFERENCE in the
GenBank sequence entry.

`We scanned the GenBank (1) database for sequence similarities and
found one sequence (2), GenBank accession number J01016, which showed
significant similarity...'

  (1) Benson, D.A. et al. Nucl. Acids Res. 28(1):15-18 (2000)
  (2) Nellen, W. and Gallwitz, D. J. Mol. Biol. 159, 1-18 (1982)

6.3 GenBank Distribution Formats and Media

  Complete flat file releases of the GenBank database are available only via
anonymous ftp from :

	ftp://ncbi.nlm.nih.gov

  Each release is cumulative, incorporating all previous GenBank data.
No retrieval software is provided. GenBank distribution via CD-ROM
ceased as of GenBank Release 106.0 (April, 1998).

6.4 Other Methods of Accessing GenBank Data

  Entrez is a molecular biology database system that presents an integrated
view of DNA and protein sequence data, 3D structure data, complete genomes,
and associated MEDLINE entries. The system is produced by the National
Center for Biotechnology Information (NCBI), and is available only via
the Internet (using the Web-Entrez and Network-Entrez applications).

  Accessing Entrez is easy: if you have a World Wide Web browser, such as
Netscape or Internet-Explorer, simply point your browser to:

	 http://www.ncbi.nlm.nih.gov/

  The Web version of Entrez has all the capabilities of the network version,
but with the visual style of the World Wide Web. If you prefer the "look and
feel" of Network-Entrez, you may download Network-Entrez from the NCBI's
FTP server:

	ftp://ncbi.nlm.nih.gov/

Versions are available for PC/Windows, Macintosh and several Unix variants.

  For information about Network-Entrez, Web-Entrez or any other NCBI
services, you may contact NCBI by e-mail to [email protected] or by
phone at 301-496-2475.

6.5 Request for Corrections and Comments

  We welcome your suggestions for improvements to GenBank. We are
especially interested to learn of errors or inconsistencies in the
data.  BankIt or Sequin can be used to submit revisions to previous
submissions.  In addition, suggestions and corrections can be sent by
electronic mail to:  [email protected].  Please be certain to
indicate the GenBank release number (e.g., Release 118.0) and the
primary accession number of the entry to which your comments apply; it
is helpful if you also give the entry name and the current contents of
any data field for which you are recommending a change.

6.6  Credits and Acknowledgments

Credits -

GenBank Release Coordination	
	Mark Cavanaugh

GenBank Submission Coordination	
	Ilene Mizrachi

GenBank Annotation Staff
        Michael Amiri, John Anderson, Medha Bhagwat, Lori Black, 
        Larry Chlumsky, Karen Clark, Irene Fang, Michael Fetchko,
        Michael Island, Sunil Kaul, Irene Kim, Junga Kim,  
        Pierre Ledoux, Daniel Lyman, Baishali Maskeri, Jenny McDowell, 
        Richard McVeigh, Leonie Misquitta, Michael Murphy, Quy Phung, 
	Lillian Riddick, Leigh Riley, Susan Schafer, 
        Suh-suh Wang, Jane Weisemann, Steven Wilhite, Sandhya Xirasagar 
	and Linda Yankie

Data Management and Preparation
	Serge Bazhin, Mark Cavanaugh, Hsiu-Chuan Chen, Jim Ostell,
	Joel Plotkin, Sergei Shavirin, Karl Sirotkin, Vladimir Soussov,
	Tatiana Tatusov, Carolyn Tolstoshev, Jane Weisemann,

Database Administration
	Cat Lukens, Eugene Yaschenko

Production and User Support
        Dennis Benson, Peter Cooper, Jim Fleshman, Susan Kimball, 
	Renata McCarthy, Scott McGinnis, Monica Romiti, Barbara Rapp, 
	Steven Rosenthal, Rose Marie Woodsmall, David Wheeler 

Project Direction
	David Lipman


Acknowledgments - 

Contractor support for GenBank production and distribution 
has been provided by Management Systems Designers, Inc., 
ComputerCraft Corporation, and The KEVRIC Company, Inc.

6.7 Disclaimer

  The United States Government makes no representations or warranties
regarding the content or accuracy of the information.  The United States
Government also makes no representations or warranties of merchantability
or fitness for a particular purpose or that the use of the sequences will
not infringe any patent, copyright, trademark, or other rights.  The
United States Government accepts no responsibility for any consequence
of the receipt or use of the information.

  For additional information about GenBank releases, please contact
NCBI by e-mail at [email protected], by phone at (301) 496-2475,
or by mail at:

  GenBank
  National Library of Medicine
  Bldg. 38A Rm. 8N-809
  8600 Rockville Pike
  Bethesda, MD 20894
  FAX: (301) 480-9241
Support Center