U.S. flag

An official website of the United States government

GTR Home > Conditions/Phenotypes

Refine your search

Results: 1 to 20 of 58

1.

Hereditary von Willebrand disease

Von Willebrand disease (VWD), a congenital bleeding disorder caused by deficient or defective plasma von Willebrand factor (VWF), may only become apparent on hemostatic challenge, and bleeding history may become more apparent with increasing age. Recent guidelines on VWD have recommended taking a VWF level of 30 or 40 IU/dL as a cutoff for those diagnosed with the disorder. Individuals with VWF levels greater than 30 IU/dL and lower than 50 IU/dL can be described as having a risk factor for bleeding. This change in guidelines significantly alters the proportion of individuals with each disease type. Type 1 VWD (~30% of VWD) typically manifests as mild mucocutaneous bleeding. Type 2 VWD accounts for approximately 60% of VWD. Type 2 subtypes include: Type 2A, which usually manifests as mild-to-moderate mucocutaneous bleeding; Type 2B, which typically manifests as mild-to-moderate mucocutaneous bleeding that can include thrombocytopenia that worsens in certain circumstances; Type 2M, which typically manifests as mild-moderate mucocutaneous bleeding; Type 2N, which can manifest as excessive bleeding with surgery and mimics mild hemophilia A. Type 3 VWD (<10% of VWD) manifests with severe mucocutaneous and musculoskeletal bleeding. [from GeneReviews]

2.

Crigler-Najjar syndrome

A rare hereditary disorder of bilirubin metabolism characterized by unconjugated hyperbilirubinemia due to a either a complete (type 1) or partial and inducible (type 2) hepatic deficit of UDP-glucuronosyltransferase 1A1 activity. The disorder manifests with neonatal jaundice with a risk of developing bilirubin encephalopathy. [from ORDO]

3.

X-linked lymphoproliferative disease due to SH2D1A deficiency

X-linked lymphoproliferative disease (XLP) has two recognizable subtypes, XLP1 and XLP2. XLP1 is characterized predominantly by one of three commonly recognized phenotypes: Inappropriate immune response to Epstein-Barr virus (EBV) infection leading to hemophagocytic lymphohistiocytosis (HLH) or severe mononucleosis. Dysgammaglobulinemia. Lymphoproliferative disease (malignant lymphoma). XLP2 is most often characterized by HLH (often associated with EBV), dysgammaglobulinemia, and inflammatory bowel disease. HLH resulting from EBV infection is associated with an unregulated and exaggerated immune response with widespread proliferation of cytotoxic T cells, EBV-infected B cells, and macrophages. Dysgammaglobulinemia is typically hypogammaglobulinemia of one or more immunoglobulin subclasses. The malignant lymphomas are typically B-cell lymphomas, non-Hodgkin type, often extranodal, and in particular involving the intestine. [from GeneReviews]

4.

Familial cold autoinflammatory syndrome 1

Cryopyrin-associated periodic syndromes (CAPS) are a group of conditions that have overlapping signs and symptoms and the same genetic cause. The group includes three conditions known as familial cold autoinflammatory syndrome type 1 (FCAS1), Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disorder (NOMID). These conditions were once thought to be distinct disorders but are now considered to be part of the same condition spectrum. FCAS1 is the least severe form of CAPS, MWS is intermediate in severity, and NOMID is the most severe form.\n\nThe signs and symptoms of CAPS affect multiple body systems. Generally, CAPS are characterized by periodic episodes of skin rash, fever, and joint pain. These episodes can be triggered by exposure to cold temperatures, fatigue, other stressors, or they may arise spontaneously. Episodes can last from a few hours to several days. These episodes typically begin in infancy or early childhood and persist throughout life.\n\nWhile the CAPS spectrum shares similar signs and symptoms, the individual conditions tend to have distinct patterns of features. People with FCAS1 are particularly sensitive to the cold, and exposure to cold temperatures can trigger a painful or burning rash. The rash usually affects the torso and limbs but may spread to the rest of the body. In addition to fever and joint pain, other possible symptoms include muscle aches, chills, drowsiness, eye redness, headache, and nausea.\n\nIndividuals with MWS develop the typical periodic episodes of skin rash, fever, and joint pain after cold exposure, although episodes may occur spontaneously or all the time. Additionally, they can develop progressive hearing loss in their teenage years. Other features of MWS include skin lesions or kidney damage from abnormal deposits of a protein called amyloid (amyloidosis).\n\nIn people with NOMID, the signs and symptoms of the condition are usually present from birth and persists throughout life. In addition to skin rash and fever, affected individuals may have joint inflammation, swelling, and joint deformities called contractures that may restrict movement. People with NOMID typically have headaches, seizures, and cognitive impairment resulting from chronic meningitis, which is inflammation of the tissue that covers and protects the brain and spinal cord (meninges). Other features of NOMID include eye problems, short stature, distinctive facial features, and kidney damage caused by amyloidosis. [from MedlinePlus Genetics]

5.

Protoporphyria, erythropoietic, 1

Erythropoietic protoporphyria (EPP) is characterized by cutaneous photosensitivity (usually beginning in infancy or childhood) that results in tingling, burning, pain, and itching within 30 minutes after exposure to sun or ultraviolet light and may be accompanied by swelling and redness. Symptoms (which may seem out of proportion to the visible skin lesions) may persist for hours or days after the initial phototoxic reaction. Photosensitivity remains for life. Multiple episodes of acute photosensitivity may lead to chronic changes of sun-exposed skin (lichenification, leathery pseudovesicles, grooving around the lips) and loss of lunulae of the nails. Approximately 20%-30% of individuals with EPP have some degree of liver dysfunction, which is typically mild with slight elevations of the liver enzymes. Up to 5% may develop more advanced liver disease which may be accompanied by motor neuropathy similar to that seen in the acute porphyrias. [from GeneReviews]

6.

Cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy, type 1

CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is characterized by mid-adult onset of recurrent ischemic stroke, cognitive decline progressing to dementia, a history of migraine with aura, mood disturbance, apathy, and diffuse white matter lesions and subcortical infarcts on neuroimaging. [from GeneReviews]

7.

Lynch syndrome

Lynch syndrome is characterized by an increased risk for colorectal cancer (CRC) and cancers of the endometrium, ovary, stomach, small bowel, urinary tract, biliary tract, brain (usually glioblastoma), skin (sebaceous adenomas, sebaceous carcinomas, and keratoacanthomas), pancreas, and prostate. Cancer risks and age of onset vary depending on the associated gene. Several other cancer types have been reported to occur in individuals with Lynch syndrome (e.g., breast, sarcomas, adrenocortical carcinoma). However, the data are not sufficient to demonstrate that the risk of developing these cancers is increased in individuals with Lynch syndrome. [from GeneReviews]

8.

Factor V deficiency

Factor V Leiden thrombophilia is characterized by a poor anticoagulant response to activated protein C (APC) and an increased risk for venous thromboembolism (VTE). Deep vein thrombosis (DVT) is the most common VTE, with the legs being the most common site. Thrombosis in unusual locations is less common. Evidence suggests that heterozygosity for the Leiden variant has at most a modest effect on risk for recurrent thrombosis after initial treatment of a first VTE. It is unlikely that factor V Leiden thrombophilia (i.e., heterozygosity or homozygosity for the Leiden variant) is a major factor contributing to pregnancy loss and other adverse pregnancy outcomes (preeclampsia, fetal growth restriction, and placental abruption). The clinical expression of factor V Leiden thrombophilia is influenced by the following: The number of Leiden variants (heterozygotes have a slightly increased risk for venous thrombosis; homozygotes have a much greater thrombotic risk). Coexisting genetic thrombophilic disorders, which have a supra-additive effect on overall thrombotic risk. Acquired thrombophilic disorders: antiphospholipid antibody (APLA) syndrome, paroxysmal nocturnal hemoglobinuria, myeloproliferative disorders, and increased levels of clotting factors. Circumstantial risk factors including but not limited to pregnancy, central venous catheters, travel, combined oral contraceptive (COC) use and other combined contraceptives, oral hormone replacement therapy (HRT), selective estrogen receptor modulators (SERMs), obesity, leg injury, and advancing age. [from GeneReviews]

9.

Multiple endocrine neoplasia, type 2

Multiple endocrine neoplasia type 2 (MEN2) includes the following phenotypes: MEN2A, FMTC (familial medullary thyroid carcinoma, which may be a variant of MEN2A), and MEN2B. All three phenotypes involve high risk for development of medullary carcinoma of the thyroid (MTC); MEN2A and MEN2B involve an increased risk for pheochromocytoma; MEN2A involves an increased risk for parathyroid adenoma or hyperplasia. Additional features in MEN2B include mucosal neuromas of the lips and tongue, distinctive facies with enlarged lips, ganglioneuromatosis of the gastrointestinal tract, and a marfanoid habitus. MTC typically occurs in early childhood in MEN2B, early adulthood in MEN2A, and middle age in FMTC. [from GeneReviews]

10.

Hemochromatosis type 1

HFE hemochromatosis is characterized by inappropriately high absorption of iron by the small intestinal mucosa. The phenotypic spectrum of HFE hemochromatosis includes: Persons with clinical HFE hemochromatosis, in whom manifestations of end-organ damage secondary to iron overload are present; Individuals with biochemical HFE hemochromatosis, in whom transferrin-iron saturation is increased and the only evidence of iron overload is increased serum ferritin concentration; and Non-expressing p.Cys282Tyr homozygotes, in whom neither clinical manifestations of HFE hemochromatosis nor iron overload are present. Clinical HFE hemochromatosis is characterized by excessive storage of iron in the liver, skin, pancreas, heart, joints, and anterior pituitary gland. In untreated individuals, early symptoms include: abdominal pain, weakness, lethargy, weight loss, arthralgias, diabetes mellitus; and increased risk of cirrhosis when the serum ferritin is higher than 1,000 ng/mL. Other findings may include progressive increase in skin pigmentation, congestive heart failure, and/or arrhythmias, arthritis, and hypogonadism. Clinical HFE hemochromatosis is more common in men than women. [from GeneReviews]

12.

Thrombophilia due to protein S deficiency, autosomal dominant

Heterozygous protein S deficiency, like protein C deficiency (176860), is characterized by recurrent venous thrombosis. Bertina (1990) classified protein S deficiency into 3 clinical subtypes based on laboratory findings. Type I refers to deficiency of both free and total protein S as well as decreased protein S activity; type II shows normal plasma values, but decreased protein S activity; and type III shows decreased free protein S levels and activity, but normal total protein S levels. Approximately 40% of protein S circulates as a free active form, whereas the remaining 60% circulates as an inactive form bound to C4BPA (120830). Zoller et al. (1995) observed coexistence of type I and type III PROS1-deficient phenotypes within a single family and determined that the subtypes are allelic. Under normal conditions, the concentration of protein S exceeds that of C4BPA by approximately 30 to 40%. Thus, free protein S is the molar surplus of protein S over C4BPA. Mild protein S deficiency will thus present with selective deficiency of free protein S, whereas more pronounced protein S deficiency will also decrease the complexed protein S and consequently the total protein S level. These findings explained why assays for free protein S have a higher predictive value for protein S deficiency. See also autosomal recessive thrombophilia due to protein S deficiency (THPH6; 614514), which is a more severe disorder. [from OMIM]

13.

Familial adenomatous polyposis 2

MUTYH polyposis (also referred to as MUTYH-associated polyposis, or MAP) is characterized by a greatly increased lifetime risk of colorectal cancer (CRC). Although typically associated with ten to a few hundred colonic adenomatous polyps, CRC develops in some individuals in the absence of polyposis. Serrated adenomas, hyperplastic/sessile serrated polyps, and mixed (hyperplastic and adenomatous) polyps can also occur. Duodenal adenomas are common, with an increased risk of duodenal cancer. The risk for malignancies of the ovary and bladder is also increased, and there is some evidence of an increased risk for breast and endometrial cancer. Additional reported features include thyroid nodules, benign adrenal lesions, jawbone cysts, and congenital hypertrophy of the retinal pigment epithelium. [from GeneReviews]

14.

3 beta-Hydroxysteroid dehydrogenase deficiency

Classic 3-beta-hydroxysteroid dehydrogenase deficiency is an autosomal recessive form of CAH characterized by a severe impairment of steroid biosynthesis in both the adrenals and the gonads, resulting in decreased excretion of cortisol and aldosterone and of progesterone, androgens, and estrogens by these tissues. Affected newborns exhibit signs and symptoms of glucocorticoid and mineralocorticoid deficiencies, which may be fatal if not diagnosed and treated early, especially in the severe salt-wasting form. Moreover, male newborns exhibit pseudohermaphroditism with incomplete masculinization of the external genitalia due to an impairment of androgen biosynthesis in the testis. In contrast, affected females exhibit normal sexual differentiation or partial virilization (summary by Rheaume et al., 1992). [from OMIM]

15.

Factor XIII, A subunit, deficiency of

Factor XIII deficiency is an autosomal recessive hematologic disorder characterized by increased bleeding and poor wound healing. Most cases of congenital factor XIII deficiency result from mutation in the A subunit (Kangsadalampai et al., 1999). Ichinose et al. (1996, 2000) proposed a classification of factor XIII deficiency: XIIIA deficiency (formerly 'type II' F13 deficiency) and XIIIB deficiency (formerly 'type I' F13 deficiency), as well as a possible combined deficiency of the 2. [from OMIM]

16.

Thrombophilia due to protein C deficiency, autosomal dominant

Heterozygous protein C deficiency is characterized by recurrent venous thrombosis. However, many adults with heterozygous disease may be asymptomatic (Millar et al., 2000). Individuals with decreased amounts of protein C are classically referred to as having type I deficiency and those with normal amounts of a functionally defective protein as having type II deficiency (Bertina et al., 1984). Acquired protein C deficiency is a clinically similar disorder caused by development of an antibody against protein C. Clouse and Comp (1986) reviewed the structural and functional properties of protein C and discussed both hereditary and acquired deficiency of protein C. [from OMIM]

17.

Classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency

21-hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia (CAH), a family of autosomal recessive disorders involving impaired synthesis of cortisol from cholesterol by the adrenal cortex. In 21-OHD CAH, excessive adrenal androgen biosynthesis results in virilization in all individuals and salt wasting in some individuals. A classic form with severe enzyme deficiency and prenatal onset of virilization is distinguished from a non-classic form with mild enzyme deficiency and postnatal onset. The classic form is further divided into the simple virilizing form (~25% of affected individuals) and the salt-wasting form, in which aldosterone production is inadequate (=75% of individuals). Newborns with salt-wasting 21-OHD CAH are at risk for life-threatening salt-wasting crises. Individuals with the non-classic form of 21-OHD CAH present postnatally with signs of hyperandrogenism; females with the non-classic form are not virilized at birth. [from GeneReviews]

18.

Familial adenomatous polyposis 1

APC-associated polyposis conditions include (classic or attenuated) familial adenomatous polyposis (FAP) and gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). FAP is a colorectal cancer (CRC) predisposition syndrome that can manifest in either classic or attenuated form. Classic FAP is characterized by hundreds to thousands of adenomatous colonic polyps, beginning on average at age 16 years (range 7-36 years). For those with the classic form of FAP, 95% of individuals have polyps by age 35 years; CRC is inevitable without colectomy. The mean age of CRC diagnosis in untreated individuals is 39 years (range 34-43 years). The attenuated form is characterized by multiple colonic polyps (average of 30), more proximally located polyps, and a diagnosis of CRC at a later age than in classic FAP. For those with an attenuated form, there is a 70% lifetime risk of CRC and the mean age of diagnosis is 50-55 years. Extracolonic manifestations are variably present and include polyps of the stomach and duodenum, osteomas, dental abnormalities, congenital hypertrophy of the retinal pigment epithelium (CHRPE), benign cutaneous lesions, desmoid tumors, adrenal masses, and other associated cancers. GAPPS is characterized by proximal gastric polyposis, increased risk of gastric adenocarcinoma, and no duodenal or colonic involvement in most individuals reported. [from GeneReviews]

19.

Hemochromatosis type 3

TFR2-related hereditary hemochromatosis (TFR2-HHC) is characterized by increased intestinal iron absorption resulting in iron accumulation in the liver, heart, pancreas, and endocrine organs. Age of onset is earlier than in HFE-HHC. The majority of individuals present with signs and symptoms of iron overload in the third decade (e.g., weakness, fatigue, abdominal pain, hepatomegaly, arthritis, arthralgia, progressive increase in skin pigmentation). Others present as young adults with nonspecific symptoms and abnormal serum iron studies or as adults with abnormal serum iron studies and signs of organ involvement including cirrhosis, diabetes mellitus, and arthropathy. [from GeneReviews]

20.

Breast-ovarian cancer, familial, susceptibility to, 1

BRCA1- and BRCA2-associated hereditary breast and ovarian cancer (HBOC) is characterized by an increased risk for female and male breast cancer, ovarian cancer (including fallopian tube and primary peritoneal cancers), and to a lesser extent other cancers such as prostate cancer, pancreatic cancer, and melanoma primarily in individuals with a BRCA2 pathogenic variant. The risk of developing an associated cancer varies depending on whether HBOC is caused by a BRCA1 or BRCA2 pathogenic variant. [from GeneReviews]

Results: 1 to 20 of 58

IMPORTANT NOTE: NIH does not independently verify information submitted to the GTR; it relies on submitters to provide information that is accurate and not misleading. NIH makes no endorsements of tests or laboratories listed in the GTR. GTR is not a substitute for medical advice. Patients and consumers with specific questions about a genetic test should contact a health care provider or a genetics professional.