Sarcotubular myopathy- MedGen UID:
- 78750
- •Concept ID:
- C0270968
- •
- Congenital Abnormality
A mild subtype of autosomal recessive limb girdle muscular dystrophy characterized by slowly progressive proximal muscle weakness and wasting of the pelvic and shoulder girdles with onset that usually occurs during the second or third decade of life. Clinical presentation is variable and can include calf psuedohypertrophy, joint contractures, scapular winging, muscle cramping and/or facial and respiratory muscle involvement.
Myofibrillar myopathy 2- MedGen UID:
- 324735
- •Concept ID:
- C1837317
- •
- Disease or Syndrome
Alpha-B crystallin-related myofibrillar myopathy is an autosomal dominant muscular disorder characterized by adult onset of progressive muscle weakness affecting both the proximal and distal muscles and associated with respiratory insufficiency, cardiomyopathy, and cataracts. There is phenotypic variability both within and between families (Fardeau et al., 1978; Selcen and Engel, 2003).
A homozygous founder mutation in the CRYAB gene has been identified in Canadian aboriginal infants of Cree origin who have a severe fatal infantile hypertonic form of myofibrillar myopathy; see 613869.
For a phenotypic description and a discussion of genetic heterogeneity of myofibrillar myopathy, see MFM1 (601419).
Glycogen storage disease IXd- MedGen UID:
- 335112
- •Concept ID:
- C1845151
- •
- Disease or Syndrome
Phosphorylase kinase (PhK) deficiency causing glycogen storage disease type IX (GSD IX) results from deficiency of the enzyme phosphorylase b kinase, which has a major regulatory role in the breakdown of glycogen. The two types of PhK deficiency are liver PhK deficiency (characterized by early childhood onset of hepatomegaly and growth restriction, and often, but not always, fasting ketosis and hypoglycemia) and muscle PhK deficiency, which is considerably rarer (characterized by any of the following: exercise intolerance, myalgia, muscle cramps, myoglobinuria, and progressive muscle weakness). While symptoms and biochemical abnormalities of liver PhK deficiency were thought to improve with age, it is becoming evident that affected individuals need to be monitored for long-term complications such as liver fibrosis and cirrhosis.
Myopathy, myofibrillar, 9, with early respiratory failure- MedGen UID:
- 350930
- •Concept ID:
- C1863599
- •
- Disease or Syndrome
Hereditary myopathy with early respiratory failure (HMERF) is a slowly progressive myopathy that typically begins in the third to fifth decades of life. The usual presenting findings are gait disturbance relating to distal leg weakness or nocturnal respiratory symptoms due to respiratory muscle weakness. Weakness eventually generalizes and affects both proximal and distal muscles. Most affected individuals require walking aids within a few years of onset; some progress to wheelchair dependence and require nocturnal noninvasive ventilatory support about ten years after onset. The phenotype varies even among individuals within the same family: some remain ambulant until their 70s whereas others may require ventilator support in their 40s.
Miyoshi muscular dystrophy 3- MedGen UID:
- 413750
- •Concept ID:
- C2750076
- •
- Disease or Syndrome
The spectrum of ANO5 muscle disease is a continuum that ranges from asymptomatic hyperCKemia and exercise-induced myalgia to proximal and/or distal muscle weakness. The most typical presentation is limb-girdle muscular dystrophy type 2L (LGMD2L) with late-onset proximal lower-limb weakness in the fourth or fifth decade (range 15-70 years). Less common is Miyoshi-like disease (Miyoshi muscular dystrophy 3) with early-adult-onset calf distal myopathy (around age 20 years). Incidental hyperCKemia may be present even earlier. Initial symptoms are walking difficulties, reduced sports performance, and difficulties in standing on toes as well as nonspecific exercise myalgia and/or burning sensation in the calf muscles. Muscle weakness and atrophy are frequently asymmetric. Cardiac findings can include cardiomyopathy and arrhythmias and/or left ventricular dysfunction. Bulbar or respiratory symptoms have not been reported. Females have milder disease manifestations than males. Disease progression is slow in both the LGMD and distal forms; ambulation is preserved until very late in the disease course. Life span is normal.
Schwartz-Jampel syndrome type 1- MedGen UID:
- 1647990
- •Concept ID:
- C4551479
- •
- Disease or Syndrome
Schwartz-Jampel syndrome type 1 (SJS1) is a rare autosomal recessive disorder characterized by muscle stiffness (myotonia) and chondrodysplasia. Affected individuals usually present in childhood with permanent muscle stiffness or bone deformities. Common clinical features include mask-like facies (narrow palpebral fissures, blepharospasm, and pursed lips); permanent muscle stiffness with continuous skeletal muscle activity recorded on electromyography; dwarfism; pectus carinatum; kyphoscoliosis; bowing of long bones; and epiphyseal, metaphyseal, and hip dysplasia. The disorder is slowly progressive but does not appear to alter life span (summary by Stum et al., 2006).
Nemaline myopathy 5C, autosomal dominant- MedGen UID:
- 1841185
- •Concept ID:
- C5830549
- •
- Disease or Syndrome
Autosomal dominant nemaline myopathy-5C (NEM5C) is a relatively mild skeletal muscle disorder with wide clinical variability, even within families. Affected individuals develop symptoms of muscle weakness in the first or second decades; those with earlier onset tend to have a more severe disease course. Features include difficulty walking on the heels, waddling gait, proximal muscle weakness affecting the upper and lower limbs, and Gowers sign. Additional features may include myopathic facies, high-arched palate, scoliosis or kyphosis, and ankle weakness. Patients remain ambulatory into late adulthood. Skeletal muscle biopsy shows hypotrophy of type 1 fibers, hypertrophy of type 2 fibers, fiber size variation, and myofibrillar disorganization. Nemaline rods in type 1 fibers are often observed, but are not always present (Konersman et al., 2017; Holling et al., 2022).
For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030).