U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Primary ciliary dyskinesia 10(CILD10)

MedGen UID:
382707
Concept ID:
C2675867
Disease or Syndrome
Synonyms: CILIARY DYSKINESIA, PRIMARY, 10, WITH OR WITHOUT SITUS INVERSUS; Primary Ciliary Dyskinesia10: DNAAF2-Related Primary Ciliary Dyskinesia
 
Gene (location): DNAAF2 (14q21.3)
 
Monarch Initiative: MONDO:0012918
OMIM®: 612518

Definition

Primary ciliary dyskinesia-10 (CILD10) is characterized by recurrent respiratory tract infections, sinusitis, otitis media, and bronchiectasis. Situs inversus may be present. Infertility in affected males results from immotile sperm (Omran et al., 2008, Sun et al., 2020). For a phenotypic description and a discussion of genetic heterogeneity of primary ciliary dyskinesia, see CILD1 (244400). [from OMIM]

Additional description

From MedlinePlus Genetics
Primary ciliary dyskinesia is a disorder characterized by chronic respiratory tract infections, abnormally positioned internal organs, and the inability to have children (infertility). The signs and symptoms of this condition are caused by abnormal cilia and flagella. Cilia are microscopic, finger-like projections that stick out from the surface of cells. They are found in the linings of the airway, the reproductive system, and other organs and tissues. Flagella are tail-like structures, similar to cilia, that propel sperm cells forward.

In the respiratory tract, cilia move back and forth in a coordinated way to move mucus towards the throat. This movement of mucus helps to eliminate fluid, bacteria, and particles from the lungs. Most babies with primary ciliary dyskinesia experience breathing problems at birth, which suggests that cilia play an important role in clearing fetal fluid from the lungs. Beginning in early childhood, affected individuals develop frequent respiratory tract infections. Without properly functioning cilia in the airway, bacteria remain in the respiratory tract and cause infection. People with primary ciliary dyskinesia also have year-round nasal congestion and a chronic cough. Chronic respiratory tract infections can result in a condition called bronchiectasis, which damages the passages, called bronchi, leading from the windpipe to the lungs and can cause life-threatening breathing problems.

Some individuals with primary ciliary dyskinesia have abnormally placed organs within their chest and abdomen. These abnormalities arise early in embryonic development when the differences between the left and right sides of the body are established. About 50 percent of people with primary ciliary dyskinesia have a mirror-image reversal of their internal organs (situs inversus totalis). For example, in these individuals the heart is on the right side of the body instead of on the left. Situs inversus totalis does not cause any apparent health problems. When someone with primary ciliary dyskinesia has situs inversus totalis, they are often said to have Kartagener syndrome.

Approximately 12 percent of people with primary ciliary dyskinesia have a condition known as heterotaxy syndrome or situs ambiguus, which is characterized by abnormalities of the heart, liver, intestines, or spleen. These organs may be structurally abnormal or improperly positioned. In addition, affected individuals may lack a spleen (asplenia) or have multiple spleens (polysplenia). Heterotaxy syndrome results from problems establishing the left and right sides of the body during embryonic development. The severity of heterotaxy varies widely among affected individuals.

Primary ciliary dyskinesia can also lead to infertility. Vigorous movements of the flagella are necessary to propel the sperm cells forward to the female egg cell. Because their sperm do not move properly, males with primary ciliary dyskinesia are usually unable to father children. Infertility occurs in some affected females and is likely due to abnormal cilia in the fallopian tubes.

Another feature of primary ciliary dyskinesia is recurrent ear infections (otitis media), especially in young children. Otitis media can lead to permanent hearing loss if untreated. The ear infections are likely related to abnormal cilia within the inner ear.

Rarely, individuals with primary ciliary dyskinesia have an accumulation of fluid in the brain (hydrocephalus), likely due to abnormal cilia in the brain.  https://medlineplus.gov/genetics/condition/primary-ciliary-dyskinesia

Clinical features

From HPO
Situs inversus
MedGen UID:
1642262
Concept ID:
C4551493
Congenital Abnormality
A left-right reversal (or mirror reflection) of the anatomical location of the major thoracic and abdominal organs.
Primary ciliary dyskinesia
MedGen UID:
3467
Concept ID:
C0008780
Disease or Syndrome
Primary ciliary dyskinesia is a disorder characterized by chronic respiratory tract infections, abnormally positioned internal organs, and the inability to have children (infertility). The signs and symptoms of this condition are caused by abnormal cilia and flagella. Cilia are microscopic, finger-like projections that stick out from the surface of cells. They are found in the linings of the airway, the reproductive system, and other organs and tissues. Flagella are tail-like structures, similar to cilia, that propel sperm cells forward.\n\nIn the respiratory tract, cilia move back and forth in a coordinated way to move mucus towards the throat. This movement of mucus helps to eliminate fluid, bacteria, and particles from the lungs. Most babies with primary ciliary dyskinesia experience breathing problems at birth, which suggests that cilia play an important role in clearing fetal fluid from the lungs. Beginning in early childhood, affected individuals develop frequent respiratory tract infections. Without properly functioning cilia in the airway, bacteria remain in the respiratory tract and cause infection. People with primary ciliary dyskinesia also have year-round nasal congestion and a chronic cough. Chronic respiratory tract infections can result in a condition called bronchiectasis, which damages the passages, called bronchi, leading from the windpipe to the lungs and can cause life-threatening breathing problems.\n\nSome individuals with primary ciliary dyskinesia have abnormally placed organs within their chest and abdomen. These abnormalities arise early in embryonic development when the differences between the left and right sides of the body are established. About 50 percent of people with primary ciliary dyskinesia have a mirror-image reversal of their internal organs (situs inversus totalis). For example, in these individuals the heart is on the right side of the body instead of on the left. Situs inversus totalis does not cause any apparent health problems. When someone with primary ciliary dyskinesia has situs inversus totalis, they are often said to have Kartagener syndrome.\n\nApproximately 12 percent of people with primary ciliary dyskinesia have a condition known as heterotaxy syndrome or situs ambiguus, which is characterized by abnormalities of the heart, liver, intestines, or spleen. These organs may be structurally abnormal or improperly positioned. In addition, affected individuals may lack a spleen (asplenia) or have multiple spleens (polysplenia). Heterotaxy syndrome results from problems establishing the left and right sides of the body during embryonic development. The severity of heterotaxy varies widely among affected individuals.\n\nPrimary ciliary dyskinesia can also lead to infertility. Vigorous movements of the flagella are necessary to propel the sperm cells forward to the female egg cell. Because their sperm do not move properly, males with primary ciliary dyskinesia are usually unable to father children. Infertility occurs in some affected females and is likely due to abnormal cilia in the fallopian tubes.\n\nAnother feature of primary ciliary dyskinesia is recurrent ear infections (otitis media), especially in young children. Otitis media can lead to permanent hearing loss if untreated. The ear infections are likely related to abnormal cilia within the inner ear.\n\nRarely, individuals with primary ciliary dyskinesia have an accumulation of fluid in the brain (hydrocephalus), likely due to abnormal cilia in the brain.
Recurrent sinusitis
MedGen UID:
107919
Concept ID:
C0581354
Disease or Syndrome
A recurrent form of sinusitis.
Abnormal respiratory motile cilium morphology
MedGen UID:
870646
Concept ID:
C4025100
Anatomical Abnormality
Abnormal arrangement of the structures of the motile cilium.
Chronic sinusitis
MedGen UID:
101751
Concept ID:
C0149516
Disease or Syndrome
A chronic form of sinusitis.
Chronic otitis media
MedGen UID:
75751
Concept ID:
C0271441
Disease or Syndrome
Chronic otitis media refers to fluid, swelling, or infection of the middle ear that does not heal and may cause permanent damage to the ear.

Term Hierarchy

Professional guidelines

PubMed

Wei S, Xie H, Cheng Y
J Paediatr Child Health 2022 Oct;58(10):1736-1740. Epub 2022 Sep 7 doi: 10.1111/jpc.16196. PMID: 36069395
Woo CJ, Allawzi A, Clark N, Kaushal N, Efthymiou T, Thamsen M, Nguyen J, Wooster R, Sullivan JC
Pulm Pharmacol Ther 2022 Aug;75:102134. Epub 2022 May 22 doi: 10.1016/j.pupt.2022.102134. PMID: 35613658
Lucas JS, Alanin MC, Collins S, Harris A, Johansen HK, Nielsen KG, Papon JF, Robinson P, Walker WT
Expert Rev Respir Med 2017 Oct;11(10):779-790. Epub 2017 Aug 2 doi: 10.1080/17476348.2017.1360770. PMID: 28745925

Recent clinical studies

Etiology

Oh J, Lee JS, Park MS, Kang YA, Cho HJ, Kim SY, Jung J, Yoon SO, Kim KW
Yonsei Med J 2024 Jan;65(1):48-54. doi: 10.3349/ymj.2023.0238. PMID: 38154480Free PMC Article
Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD, Milla C, Pittman JE, Shapiro AJ, Sullivan KM, Nykamp KR, Krischer JP, Zariwala MA, Knowles MR, Leigh MW
Am J Respir Crit Care Med 2019 Jan 15;199(2):190-198. doi: 10.1164/rccm.201803-0548OC. PMID: 30067075Free PMC Article
Bruechle NO, Steuernagel P, Zerres K, Kurth I, Eggermann T, Knopp C
Pediatr Nephrol 2017 Oct;32(10):1989-1992. Epub 2017 Jun 15 doi: 10.1007/s00467-017-3710-8. PMID: 28620746
Horani A, Ferkol TW
Expert Rev Respir Med 2016;10(5):569-76. Epub 2016 Mar 28 doi: 10.1586/17476348.2016.1165612. PMID: 26967669Free PMC Article
Barker AR, Thomas R, Dawe HR
Organogenesis 2014 Jan 1;10(1):96-107. Epub 2013 Dec 9 doi: 10.4161/org.27375. PMID: 24322779Free PMC Article

Diagnosis

Petrarca L, De Luca A, Nenna R, Hadchouel A, Mazza T, Conti MG, Masuelli L, Midulla F, Guida V
Pediatr Pulmonol 2023 Oct;58(10):2950-2953. Epub 2023 Jul 21 doi: 10.1002/ppul.26604. PMID: 37477497
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS; Genomics England Research Consortium, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A; Genomics England Research Consortium:, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM
Eur Respir J 2022 Nov;60(5) Epub 2022 Nov 17 doi: 10.1183/13993003.00176-2022. PMID: 35728977
Hannah WB, Seifert BA, Truty R, Zariwala MA, Ameel K, Zhao Y, Nykamp K, Gaston B
Lancet Respir Med 2022 May;10(5):459-468. Epub 2022 Jan 17 doi: 10.1016/S2213-2600(21)00453-7. PMID: 35051411Free PMC Article
Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD, Milla C, Pittman JE, Shapiro AJ, Sullivan KM, Nykamp KR, Krischer JP, Zariwala MA, Knowles MR, Leigh MW
Am J Respir Crit Care Med 2019 Jan 15;199(2):190-198. doi: 10.1164/rccm.201803-0548OC. PMID: 30067075Free PMC Article
Lu SJ, Loo SW
Intern Emerg Med 2015 Aug;10(5):639-40. Epub 2015 Jan 30 doi: 10.1007/s11739-015-1201-0. PMID: 25633235

Therapy

Ewen R, Pink I, Sutharsan S, Aries SP, Grünewaldt A, Shoemark A, Sommerwerck U, Staar BO, Wege S, Mertsch P, Rademacher J, Ringshausen FC; PROGNOSIS Study Group
Chest 2024 Nov;166(5):938-950. Epub 2024 Jun 15 doi: 10.1016/j.chest.2024.05.023. PMID: 38880279Free PMC Article
Ringshausen FC, Shapiro AJ, Nielsen KG, Mazurek H, Pifferi M, Donn KH, van der Eerden MM, Loebinger MR, Zariwala MA, Leigh MW, Knowles MR, Ferkol TW; CLEAN-PCD investigators and study team
Lancet Respir Med 2024 Jan;12(1):21-33. Epub 2023 Aug 31 doi: 10.1016/S2213-2600(23)00226-6. PMID: 37660715
Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD, Milla C, Pittman JE, Shapiro AJ, Sullivan KM, Nykamp KR, Krischer JP, Zariwala MA, Knowles MR, Leigh MW
Am J Respir Crit Care Med 2019 Jan 15;199(2):190-198. doi: 10.1164/rccm.201803-0548OC. PMID: 30067075Free PMC Article
Lucas JS, Alanin MC, Collins S, Harris A, Johansen HK, Nielsen KG, Papon JF, Robinson P, Walker WT
Expert Rev Respir Med 2017 Oct;11(10):779-790. Epub 2017 Aug 2 doi: 10.1080/17476348.2017.1360770. PMID: 28745925
O'Connor MG, Godfrey JC, Chinnadurai S, Young L
Clin Pediatr (Phila) 2017 Sep;56(10):967-970. Epub 2017 May 8 doi: 10.1177/0009922817706147. PMID: 28478721

Prognosis

Ewen R, Pink I, Sutharsan S, Aries SP, Grünewaldt A, Shoemark A, Sommerwerck U, Staar BO, Wege S, Mertsch P, Rademacher J, Ringshausen FC; PROGNOSIS Study Group
Chest 2024 Nov;166(5):938-950. Epub 2024 Jun 15 doi: 10.1016/j.chest.2024.05.023. PMID: 38880279Free PMC Article
Ringshausen FC, Shapiro AJ, Nielsen KG, Mazurek H, Pifferi M, Donn KH, van der Eerden MM, Loebinger MR, Zariwala MA, Leigh MW, Knowles MR, Ferkol TW; CLEAN-PCD investigators and study team
Lancet Respir Med 2024 Jan;12(1):21-33. Epub 2023 Aug 31 doi: 10.1016/S2213-2600(23)00226-6. PMID: 37660715
Sagel SD, Kupfer O, Wagner BD, Davis SD, Dell SD, Ferkol TW, Hoppe JE, Rosenfeld M, Sullivan KM, Tiddens HAWM, Knowles MR, Leigh MW
Ann Am Thorac Soc 2023 Jan;20(1):67-74. doi: 10.1513/AnnalsATS.202204-314OC. PMID: 35984413Free PMC Article
Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD, Milla C, Pittman JE, Shapiro AJ, Sullivan KM, Nykamp KR, Krischer JP, Zariwala MA, Knowles MR, Leigh MW
Am J Respir Crit Care Med 2019 Jan 15;199(2):190-198. doi: 10.1164/rccm.201803-0548OC. PMID: 30067075Free PMC Article
Lucas JS, Alanin MC, Collins S, Harris A, Johansen HK, Nielsen KG, Papon JF, Robinson P, Walker WT
Expert Rev Respir Med 2017 Oct;11(10):779-790. Epub 2017 Aug 2 doi: 10.1080/17476348.2017.1360770. PMID: 28745925

Clinical prediction guides

Ewen R, Pink I, Sutharsan S, Aries SP, Grünewaldt A, Shoemark A, Sommerwerck U, Staar BO, Wege S, Mertsch P, Rademacher J, Ringshausen FC; PROGNOSIS Study Group
Chest 2024 Nov;166(5):938-950. Epub 2024 Jun 15 doi: 10.1016/j.chest.2024.05.023. PMID: 38880279Free PMC Article
Ringshausen FC, Shapiro AJ, Nielsen KG, Mazurek H, Pifferi M, Donn KH, van der Eerden MM, Loebinger MR, Zariwala MA, Leigh MW, Knowles MR, Ferkol TW; CLEAN-PCD investigators and study team
Lancet Respir Med 2024 Jan;12(1):21-33. Epub 2023 Aug 31 doi: 10.1016/S2213-2600(23)00226-6. PMID: 37660715
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS; Genomics England Research Consortium, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A; Genomics England Research Consortium:, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM
Eur Respir J 2022 Nov;60(5) Epub 2022 Nov 17 doi: 10.1183/13993003.00176-2022. PMID: 35728977
Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD, Milla C, Pittman JE, Shapiro AJ, Sullivan KM, Nykamp KR, Krischer JP, Zariwala MA, Knowles MR, Leigh MW
Am J Respir Crit Care Med 2019 Jan 15;199(2):190-198. doi: 10.1164/rccm.201803-0548OC. PMID: 30067075Free PMC Article
Barker AR, Thomas R, Dawe HR
Organogenesis 2014 Jan 1;10(1):96-107. Epub 2013 Dec 9 doi: 10.4161/org.27375. PMID: 24322779Free PMC Article

Recent systematic reviews

Junior JHMF, Junior SP, Pustilnik HN, de Almeida Leão L, da Paz MGDS, Araujo TB, de Deus FOG, Alcântara T, Dourado JC, de Avellar LM
Childs Nerv Syst 2024 Jul;40(7):2161-2168. Epub 2024 Mar 9 doi: 10.1007/s00381-024-06346-3. PMID: 38459147
Inaba A, Furuhata M, Morimoto K, Rahman M, Takahashi O, Hijikata M, Knowles MR, Keicho N
BMC Pulm Med 2019 Jul 25;19(1):135. doi: 10.1186/s12890-019-0897-4. PMID: 31345208Free PMC Article
Adil EA, Kawai K, Dombrowski N, Irace AL, Cunningham MJ
Laryngoscope 2017 Jan;127(1):6-13. Epub 2016 Jun 16 doi: 10.1002/lary.26070. PMID: 27312809
Goutaki M, Meier AB, Halbeisen FS, Lucas JS, Dell SD, Maurer E, Casaulta C, Jurca M, Spycher BD, Kuehni CE
Eur Respir J 2016 Oct;48(4):1081-1095. Epub 2016 Aug 4 doi: 10.1183/13993003.00736-2016. PMID: 27492829
Brower KS, Del Vecchio MT, Aronoff SC
BMC Pediatr 2014 Dec 10;14:4. doi: 10.1186/s12887-014-0299-y. PMID: 25492164Free PMC Article

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...