Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Late stage assay provider results from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): fluorescence-based real-time polymerase chain reaction assay to determine the effect of probe candidates on endogenous expression of glucose-6-phosphatase (G6PC)
Assay data:1 Tested
SummaryPubMed CitationRelated BioAssays by DepositorRelated BioAssays by Same ProjectRelated BioAssays by Target
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based cell-based dose response assay to identify inhibitors of glucose-6-phosphatase (G6PC)
Assay data:1 Active, 1 Tested
SummaryCompounds, ActivePubMed CitationRelated BioAssays by DepositorRelated BioAssays by Same ProjectRelated BioAssays by Target
Late stage assay provider results from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based dose response assay to identify RORA inhibitors
Assay data:1 Active, 1 Activity ≤ 1 µM, 1 Tested
SummaryCompounds, ActiveCompounds, activity ≤ 1 µMPubMed CitationRelated BioAssays by DepositorRelated BioAssays by Same ProjectRelated BioAssays by Target
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescent-based dose response assay to identify RORG inhibitors
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based dose response assay to identify activators of the liver X receptor (LXR)
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based cell-based assay to identify inhibitors of the human herpes virus VP16 transcriptional activator protein (VP16)
Assay data:1 Active, 6 Tested
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based cell-based assay to identify RORG inhibitors
Assay data:6 Tested
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based cell-based assay to identify activators of the farnesoid X receptor (FXR)
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based cell-based assay to identify inhibitors of glucose-6-phosphatase (G6PC)
Late stage assay provider counterscreen from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescence-based cell-based assay to identify activators of the liver X receptor (LXR)
Late stage assay provider results from the probe development effort to identify selective inverse agonists of the Retinoic acid receptor-related Orphan Receptors (RORA): luminescent-based assay to identify RORA inhibitors
Center Based Initiative to identify novel modulators of the Retinoic acid receptor-related Orphan Receptors (ROR): luminescence-based high throughput cell-based assay to identify modulators of human nuclear receptors.
Assay data:14 Active, 14 Tested
Summary of probe development efforts to identify novel modulators of the Retinoic acid receptor-related Orphan Receptors (ROR).
Assay data:2 Active, 2 Tested
Filters: Manage Filters
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on