U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from Protein

Items: 9

1.

HAD hydrolase family protein

This family contains haloacid dehalogenase-like hydrolase enzymes. (from Pfam)

Date:
2024-08-14
Family Accession:
NF019887.5
Method:
HMM
2.

HAD family hydrolase

This family consists of Sucrose-6F-phosphate phosphohydrolase proteins found in plants and cyanobacteria. Sucrose-6(F)-phosphate phosphohydrolase catalyses the final step in the pathway of sucrose biosynthesis [1]. [1]. 11050182. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Lunn JE, Ashton AR, Hatch MD, Heldt HW;. Proc Natl Acad Sci U S A 2000;97:12914-12919. (from Pfam)

Date:
2024-10-16
Family Accession:
NF016972.5
Method:
HMM
3.
new record, indexing in progress
Family Accession:
4.
new record, indexing in progress
Family Accession:
5.
new record, indexing in progress
Family Accession:
6.
new record, indexing in progress
Family Accession:
7.

Cof-type HAD-IIB family hydrolase

Cof-type HAD-IIB family hydrolase, part of the HAD (haloacid dehalogenase) family that includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates

Date:
2024-05-15
Family Accession:
11576297
Method:
Sparcle
8.

HAD-IIB family hydrolase

This subfamily falls within the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The Class II subfamilies are characterized by a domain that is located between the second and third conserved catalytic motifs of the superfamily domain. The IIB subfamily is distinguished from the IIA subfamily (TIGR01460) by homology and the predicted secondary structure of this domain by PSI-PRED. The IIB subfamily's Class II domain has the following predicted structure: Helix-Sheet-Sheet-(Helix or Sheet)-Helix-Sheet-(variable)-Helix-Sheet-Sheet. The IIB subfamily consists of Trehalose-6-phosphatase (TIGR00685), plant and cyanobacterial Sucrose-phosphatase and a closely related group of bacterial and archaeal sequences, eukaryotic phosphomannomutase (PF03332), a large subfamily ("Cof-like hydrolases", TIGR00099) containing many closely related bacterial sequences, a hypothetical equivalog containing the E. coli YedP protein, as well as two small clusters containing OMNI|TC0379 and OMNI|SA2196 whose relationship to the other groups is unclear.

GO Terms:
Biological Process:
metabolic process (GO:0008152)
Molecular Function:
hydrolase activity (GO:0016787)
Date:
2021-04-27
Family Accession:
TIGR01484.1
Method:
HMM
9.

Cof-type HAD-IIB family hydrolase

This subfamily of sequences falls within the Class-IIB subfamily (TIGR01484) of the Haloacid Dehalogenase superfamily of aspartate-nucleophile hydrolases. The use of the name "Cof" as an identifier here is arbitrary and refers to the E. coli Cof protein. This subfamily is notable for the large number of recent paralogs in many species. Listeria, for instance, has 12, Clostridium, Lactococcus and Streptococcus pneumoniae have 8 each, Enterococcus and Salmonella have 7 each, and Bacillus subtilus, Mycoplasma, Staphylococcus and E. coli have 6 each. This high degree of gene duplication is limited to the gamma proteobacteria and low-GC gram positive lineages. The profusion of genes in this subfamily is not coupled with a high degree of divergence, so it is impossible to determine an accurate phylogeny at the equivalog level. Considering the relationship of this subfamily to the other known members of the HAD-IIB subfamily (TIGR01484), sucrose and trehalose phosphatases and phosphomannomutase, it seems a reasonable hypothesis that these enzymes act on phosphorylated sugars. Possibly the diversification of genes in this subfamily represents the diverse sugars and polysaccharides that various bacteria find in their biological niches. The members of this subfamily are restricted almost exclusively to bacteria (one sequences from S. pombe scores above trusted, while another is between trusted and noise). It is notable that no archaea are found in this group, the closest relations to the archaea found here being two Deinococcus sequences.

GO Terms:
Molecular Function:
hydrolase activity (GO:0016787)
Date:
2024-07-08
Family Accession:
TIGR00099.1
Method:
HMM
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center