U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from Protein

Items: 15

1.

GDP-mannose 4,6-dehydratase

Date:
2024-08-14
Family Accession:
NF027681.5
Method:
HMM
2.

sugar nucleotide-binding protein

L-rhamnose is a saccharide required for the virulence of some bacteria. Its precursor, dTDP-L-rhamnose, is synthesised by four different enzymes the final one of which is RmlD. The RmlD substrate binding domain is responsible for binding a sugar nucleotide [1,2]. [1]. 12057193. Variation on a Theme of SDR. dTDP-6-Deoxy-L- lyxo-4-Hexulose Reductase (RmlD) Shows a New Mg(2+)-Dependent Dimerization Mode. Blankenfeldt W, Kerr ID, Giraud MF, McMiken HJ, Leonard G, Whitfield C, Messner P, Graninger M, Naismith JH;. Structure (Camb) 2002;10:773-786. [2]. 10802738. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH;. Nat Struct Biol 2000;7:398-402. (from Pfam)

Date:
2024-10-16
Family Accession:
NF016228.5
Method:
HMM
3.

polysaccharide biosynthesis protein

This is a family of diverse bacterial polysaccharide biosynthesis proteins including the CapD protein (Swiss:P39853) [1], WalL protein (Swiss:O86159) mannosyl-transferase (Swiss:O05349) [2] and several putative epimerases (e.g. WbiI Swiss:O69130). [1]. 7961465. Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. Lin WS, Cunneen T, Lee CY;. J Bacteriol 1994;176:7005-7016. [2]. 9079898. Identification of additional genes required for O-antigen biosynthesis in Vibrio cholerae O1. Fallarino A, Mavrangelos C, Stroeher UH, Manning PA;. J Bacteriol 1997;179:2147-2153. (from Pfam)

Date:
2024-10-16
Family Accession:
NF014740.5
Method:
HMM
4.

NAD-dependent epimerase/dehydratase family protein

This family of proteins utilise NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. [1]. 9174344. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli. Thoden JB, Hegeman AD, Wesenberg G, Chapeau MC, Frey PA, Holden HM;. Biochemistry 1997;36:6294-6304. (from Pfam)

GO Terms:
Molecular Function:
catalytic activity (GO:0003824)
Date:
2024-10-16
Family Accession:
NF013530.5
Method:
HMM
5.

SDR family NAD(P)-dependent oxidoreductase

This family contains a wide variety of dehydrogenases. [1]. 9735295. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 A resolution. Benach J, Atrian S, Gonzalez-Duarte R, Ladenstein R;. J Mol Biol 1998;282:383-399. [2]. 10387002. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis. Yamashita A, Kato H, Wakatsuki S, Tomizaki T, Nakatsu T, Nakajima K, Hashimoto T, Yamada Y, Oda J;. Biochemistry 1999;38:7630-7637. (from Pfam)

Date:
2024-10-16
Family Accession:
NF012334.5
Method:
HMM
6.

3-beta hydroxysteroid dehydrogenase/isomerase family

The enzyme 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3 beta-HSD) catalyses the oxidation and isomerisation of 5-ene-3 beta-hydroxypregnene and 5-ene-hydroxyandrostene steroid precursors into the corresponding 4-ene-ketosteroids necessary for the formation of all classes of steroid hormones. [1]. 1562516. Structure and tissue-specific expression of 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase genes in human and rat classical and peripheral steroidogenic tissues. Labrie F, Simard J, Luu-The V, Pelletier G, Belanger A, Lachance Y, Zhao HF, Labrie C, Breton N, de Launoit Y, et al. J Steroid Biochem Mol Biol 1992;41:421-435. (from Pfam)

GO Terms:
Molecular Function:
3-beta-hydroxy-delta5-steroid dehydrogenase (NAD+) activity (GO:0003854)
Biological Process:
steroid biosynthetic process (GO:0006694)
Molecular Function:
oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor (GO:0016616)
Date:
2024-10-16
Family Accession:
NF013255.5
Method:
HMM
7.
new record, indexing in progress
Family Accession:
8.
new record, indexing in progress
Family Accession:
9.
new record, indexing in progress
Family Accession:
10.
new record, indexing in progress
Family Accession:
11.
new record, indexing in progress
Family Accession:
12.
new record, indexing in progress
Family Accession:
13.

UDP-glucose 4-epimerase GalE

Alternate name: UDPgalactose 4-epimerase This enzyme interconverts UDP-glucose and UDP-galactose. A set of related proteins, some of which are tentatively identified as UDP-glucose-4-epimerase in Thermotoga maritima, Bacillus halodurans, and several archaea, but deeply branched from this set and lacking experimental evidence, are excluded from this HMM and described by a separate model.

Gene:
galE
GO Terms:
Molecular Function:
UDP-glucose 4-epimerase activity (GO:0003978)
Biological Process:
galactose metabolic process (GO:0006012)
Date:
2021-04-27
Family Accession:
TIGR01179.1
Method:
HMM
14.

NAD-dependent epimerase/dehydratase family protein

NAD-dependent epimerase/dehydratase family protein such as UDP-glucose 4-epimerase GalE, which catalyzes the NAD-dependent interconversion of UDP-galactose and UDP-glucose

Date:
2024-04-17
Family Accession:
10787209
Method:
Sparcle
15.

UDP-glucose 4-epimerase

Date:
2020-10-26
Family Accession:
NF007956.0
Method:
HMM
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center