Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
MGS-like domain
This domain composes the whole protein of methylglyoxal synthetase and the domain is also found in Carbamoyl phosphate synthetase (CPS) where it forms a regulatory domain that binds to the allosteric effector ornithine. This family also includes inosicase. The known structures in this family show a common phosphate binding site [1]. [1]. 10526357. Structure classification-based assessment of CASP3 predictions for the fold recognition targets. Murzin AG;. Proteins 1999;37:88-103. (from Pfam)
methylglyoxal synthase
Catalyzes the formation of methylglyoxal from glycerone phosphate
methylglyoxal synthase catalyzes the enolization of dihydroxyacetone phosphate (DHAP) to produce methylglyoxal
Methylglyoxal synthase (MGS) generates methylglyoxal (MG), a toxic metabolite (that may also be a regulatory metabolite and) that is detoxified, prinicipally, through a pathway involving glutathione and glyoxylase I. Totemeyer, et al. (MUID:98149311) propose that, during a loss of control over carbon flux, with accumulation of phosphorylated sugars and depletion of phosphate, as might happen during a rapid shift to a richer medium, MGS aids the cell by converting some dihydroxyacetone phosphate (DHAP) to MG and phosphate. This is therefore an alternative to triosephosphate isomerase and the remainder of the glycolytic pathway for the disposal of DHAP during the stress of a sudden increase in available sugars.
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on