Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Elongation factor G domain 2
Class II release factor RF3, C-terminal domain
EF-Tu/IF-2/RF-3 family GTPase
Elongation factor Tu consists of three structural domains, this is the second domain. This domain adopts a beta barrel structure. This the second domain is involved in binding to charged tRNA [1]. This domain is also found in other proteins such as elongation factor G and translation initiation factor IF-2. This domain is structurally related to Pfam:PF03143, and in fact has weak sequence matches to this domain. [1]. 7491491. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu,. and a GTP analog.. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L,. Clark BF, Nyborg J;. Science 1995;270:1464-1472. (from Pfam)
GTPase
This HMM identifies the P-loop-containing domain of large numbers of GTPases with ribosome-associated functions, including many involved in ribosome maturation (Der, Era, etc), ribosome rescue (HflX), and protein translation (InfB, Tuf, PrfC).
GTP-binding protein
This domain contains a P-loop motif, also found in several other families such as Pfam:PF00071, Pfam:PF00025 and Pfam:PF00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains. Cryoelectron microscopy structure.. [1]. 9311785. Visualization of elongation factor Tu on the Escherichia coli. ribosome.. Stark H, Rodnina MV, Rinke-Appel J, Brimacombe R, Wintermeyer W,. van Heel M;. Nature 1997;389:403-406. (from Pfam)
peptide chain release factor 3
peptide chain release factor 3, RF3, is a GTP-binding protein that promotes rapid dissociation of release factors RF1 and RF2 from the ribosome after peptide release
Stimulates the release of release factors 1 and 2 from the ribosome after hydrolysis of the ester bond in peptidyl-tRNA has occurred; GDP/GTP-binding protein
This translation releasing factor, RF-3 (prfC) was originally described as stop codon-independent, in contrast to peptide chain release factor 1 (RF-1, prfA) and RF-2 (prfB). RF-1 and RF-2 are closely related to each other, while RF-3 is similar to elongation factors EF-Tu and EF-G; RF-1 is active at UAA and UAG and RF-2 is active at UAA and UGA. More recently, RF-3 was shown to be active primarily at UGA stop codons in E. coli. All bacteria and organelles have RF-1. The Mycoplasmas and organelles, which translate UGA as Trp rather than as a stop codon, lack RF-2. RF-3, in contrast, seems to be rare among bacteria and is found so far only in Escherichia coli and some other gamma subdivision Proteobacteria, in Synechocystis PCC6803, and in Staphylococcus aureus.
Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once. This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model.
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on