U.S. flag

An official website of the United States government

Format
Items per page
Sort by

Send to:

Choose Destination

Links from Protein

Items: 10

1.

SDR family oxidoreductase

This domain is found in Enoyl-(Acyl carrier protein) reductases. (from Pfam)

Date:
2024-08-14
Family Accession:
NF024950.5
Method:
HMM
2.

KR domain-containing protein

This enzymatic domain is part of bacterial polyketide synthases and catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing polyketide chain. It uses NADPH to reduce the keto group to a hydroxy group [1]. [1]. 23790488. Structural and stereochemical analysis of a modular polyketide synthase ketoreductase domain required for the generation of a cis-alkene. Bonnett SA, Whicher JR, Papireddy K, Florova G, Smith JL, Reynolds KA;. Chem Biol. 2013;20:772-783. (from Pfam)

Date:
2024-10-16
Family Accession:
NF020243.5
Method:
HMM
3.

SDR family NAD(P)-dependent oxidoreductase

This family contains a wide variety of dehydrogenases. [1]. 9735295. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 A resolution. Benach J, Atrian S, Gonzalez-Duarte R, Ladenstein R;. J Mol Biol 1998;282:383-399. [2]. 10387002. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis. Yamashita A, Kato H, Wakatsuki S, Tomizaki T, Nakatsu T, Nakajima K, Hashimoto T, Yamada Y, Oda J;. Biochemistry 1999;38:7630-7637. (from Pfam)

Date:
2024-10-16
Family Accession:
NF012334.5
Method:
HMM
4.
new record, indexing in progress
Family Accession:
5.
new record, indexing in progress
Family Accession:
6.
new record, indexing in progress
Family Accession:
7.
new record, indexing in progress
Family Accession:
8.
new record, indexing in progress
Family Accession:
9.
new record, indexing in progress
Family Accession:
10.

SDR family oxidoreductase

classical SDR (short-chain dehydrogenase/reductase) family NAD(P)-dependent oxidoreductase may catalyze isomerization, decarboxylation, epimerization, C=N bond reduction, dehydration, dehalogenation, enoyl-CoA reduction, and/or carbonyl-alcohol oxidoreduction; classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue

Date:
2024-05-16
Family Accession:
10143300
Method:
Sparcle
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Find related data

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center