Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length

PLoS Genet. 2009 Nov;5(11):e1000746. doi: 10.1371/journal.pgen.1000746. Epub 2009 Nov 26.

Abstract

Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Carrier Proteins / metabolism
  • Carrier Proteins / physiology*
  • Cell Polarity / genetics*
  • Cytoplasm
  • Dishevelled Proteins
  • Drosophila Proteins / metabolism
  • Drosophila Proteins / physiology*
  • Drosophila melanogaster
  • Embryo, Nonmammalian
  • Epithelium
  • Gene Expression
  • Phenotype
  • Phosphoproteins / metabolism
  • Protein Binding
  • Trachea / growth & development*

Substances

  • Adaptor Proteins, Signal Transducing
  • Carrier Proteins
  • Dishevelled Proteins
  • Drosophila Proteins
  • Phosphoproteins
  • dsh protein, Drosophila
  • sano protein, Drosophila