[URE3] is an amyloid prion of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. Overproduction of Btn2p, involved in late endosome to Golgi protein transport, or its paralog Cur1p, cures [URE3]. Btn2p, in curing, is colocalized with Ure2p in a single locus, suggesting sequestration of Ure2p amyloid filaments. We find that most [URE3] variants generated in a btn2 cur1 double mutant are cured by restoring normal levels of Btn2p and Cur1p, with both proteins needed for efficient curing. The [URE3] variants cured by normal levels of Btn2p and Cur1p all have low seed number, again suggesting a seed sequestration mechanism. Hsp42 overproduction also cures [URE3], and Hsp42p aids Btn2 overproduction curing. Cur1p is needed for Hsp42 overproduction curing of [URE3], but neither Btn2p nor Cur1p is needed for overproduction curing by the other. Although hsp42Δ strains stably propagate [URE3-1], hsp26Δ destabilizes this prion. Thus, Btn2p and Cur1p are antiprion system components at their normal levels, acting with Hsp42. Btn2p is related in sequence to human Hook proteins, involved in aggresome formation and other transport activities.
Keywords: Bmh1; Sis1; prion seed sequestration.