5'-Phosphoribosylglycinamide synthetase (EC 6.3.4.13) and 5'-phosphoribosyl 5-aminoimidazole-4-carboxamide transformylase (EC 2.1.2.3) are enzymes involved in the de novo purine nucleotide synthesis and are encoded by purD and purH genes of Escherichia coli, respectively. A 3535-nucleotide sequence containing the purHD locus and the upstream region of the rrnE gene was determined. This sequence specifies two open reading frames, ORF-1 and ORF-2, encoding proteins with the expected Mr of 57,329 and 46,140, respectively. The plasmids carrying ORF-1 complemented not only the mutant cells defective in purH of E. coli but also the cells of Salmonella typhimurium lacking the activity of IMP cyclohydrolase (EC 3.5.4.10) which catalyzes the conversion of 5'-phosphoribosyl 5-formylaminoimidazole-4-carboxamide to IMP. The E. coli purH gene, therefore, specifies bifunctional 5'-phosphoribosyl 5-aminoimidazole-4-carboxamide transformylase-IMP cyclohydrolase. The plasmids carrying ORF-2 were able to complement the mutant cells defective in purD. Both purH and purD genes constitute a single operon and are coregulated in expression by purines as other purine genes are. A highly conserved 16-nucleotide sequence termed the PUR box (Watanabe, W., Sampei, G., Aiba, A., and Mizobuchi, K. (1989) J. Bacteriol. 171, 198-204; Tiedeman, A.A., Keyhani, J., Kamholz, J., Daum, H. A., III, Gots, J.S., and Smith, J.M. (1989) J. Bacteriol. 171, 205-212) was found in the control region of the purHD operon and compared with the sequences of the control regions of other purine operons.