Partially purified nonspecific phosphate-repressible alkaline phosphatase from Saccharomyces cerevisiae encoded by PHO8 gene (rALPase), efficiently dephosphorylates phosphohistones and a variety of phosphopeptides. The pho8 mutant, constructed by disruption of the chromosomal counterpart of the PHO8 gene, is lacking in phosphatase activity toward phosphopeptides, confirming that this activity is actually due to rALPase. rALPase activity tested on phosphopeptides is maximum in the pH range 6.5-7.5 and the Km values for these substrates are in the micromolar range, suggesting a possible physiological relevance of this enzyme as a protein phosphatase. rALPase dephosphorylates phosphotyrosyl more efficiently than phosphoseryl peptides, but is poorly active on phosphothreonyl peptides. Its specificity towards synthetic peptides and insensitivity to specific inhibitors and activators of authentic protein phosphatases indicate that rALPase differs from both Ser/Thr- and Tyr-specific protein phosphatases. This conclusion is consistent with the lack of homology with any class of known protein phosphatases.