In order to develop a detection method for the rice pathogens Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli, the phylogeny of six plant-pathogenic Burkholderia species was analysed using the combined nucleotide sequences of gyrB and rpoD. B. plantarii, B. glumae and B. gladioli formed tight monophyletic branches supported by high bootstrap probabilities. The high sequence similarity revealed a close phylogenetic relationship between B. glumae and B. plantarii. B. plantarii strains were divided into three subclusters comprising rice strains, whereas the single Vanda strain occupied a unique position in the phylogenetic tree. The gyrB and rpoD sequences of all B. glumae strains examined were highly conserved. In contrast, B. gladioli strains demonstrated a far greater sequence diversity, but this diversity did not correlate with pathovar, host plant or geographical origin of the strains. A multiplex-PCR protocol using specific primers from the gyrB sequences was designed that allowed the specific detection and identification of B. plantarii, B. glumae and B. gladioli in rice seeds infected with these pathogenic species.