U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Links from GEO DataSets

SRX19794960: GSM7120305: Not infected, 5°C, replicate 1; Myotis myotis; RNA-Seq
1 ILLUMINA (NextSeq 500) run: 53.3M spots, 4G bases, 1.6Gb downloads

External Id: GSM7120305_r1
Submitted by: Institut Pasteur
Study: Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation
show Abstracthide Abstract
Background: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. Results: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures – 37 ? C and 5 ? C - to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or downregulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. Conclusions: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses. Overall design: Comparative gene expression in infected olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1) cultivated at two different temperatures – 37 ? C and 5 ? C - to examine the cell response during conditions simulating euthermia and torpor, respectively. The dataset includes sequencing data of 12 samples, technical triplicates from a different laboratory session of each treatment conditions – Infected at 37°C, Infected at 5°C, Non-infected at 37°C, Non-infected at 5°C.
Sample: Not infected, 5°C, replicate 1
SAMN33950597 • SRS17161945 • All experiments • All runs
Organism: Myotis myotis
Library:
Name: GSM7120305
Instrument: NextSeq 500
Strategy: RNA-Seq
Source: TRANSCRIPTOMIC
Selection: cDNA
Layout: SINGLE
Construction protocol: After a total of 54h post-infection (hpi), the supernatants were collected and stored at −80◦C. The cells were lysed with 1 mL of TRIzol (ThermoFisher) and RNA was extracted using Direct-zol RNA Miniprep Kit (Zymo Research) according to the manufacturer's instructions (including a DNAse I treatment), and eluted into 50 µL RNAse free water. Strand-specific single-end cDNA libraries were prepared using TruSeq Stranded mRNA sample prep kit, Illumina according to the manufacturers' instructions and sequenced using Illumina NextSeq 500 sequencer.
Runs: 1 run, 53.3M spots, 4G bases, 1.6Gb
Run# of Spots# of BasesSizePublished
SRR2399116453,306,8714G1.6Gb2023-03-29

ID:
27139663

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...