Nitrile hydratase beta subunit; Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that ...
7-210
2.13e-31
Nitrile hydratase beta subunit; Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that catalyze the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alpha beta unit.
The actual alignment was detected with superfamily member pfam02211:
Pssm-ID: 451352 Cd Length: 223 Bit Score: 120.43 E-value: 2.13e-31
nitrile hydratase, alpha subunit; This model describes both iron- and cobalt-containing ...
295-495
1.83e-64
nitrile hydratase, alpha subunit; This model describes both iron- and cobalt-containing nitrile hydratase alpha chains. It excludes the thiocyanate hydrolase gamma subunit of Thiobacillus thioparus, a sequence that appears to have evolved from within the family of nitrile hydratase alpha subunits but which differs by several indels and a more rapid accumulation of point mutations. [Energy metabolism, Amino acids and amines]
Pssm-ID: 188130 [Multi-domain] Cd Length: 189 Bit Score: 207.23 E-value: 1.83e-64
Nitrile hydratase beta subunit; Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that ...
7-210
2.13e-31
Nitrile hydratase beta subunit; Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that catalyze the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alpha beta unit.
Pssm-ID: 426662 Cd Length: 223 Bit Score: 120.43 E-value: 2.13e-31
nitrile hydratase, beta subunit; Members of this protein family are the beta subunit of ...
7-209
5.28e-30
nitrile hydratase, beta subunit; Members of this protein family are the beta subunit of nitrile hydratase. The alpha subunit is represented by model TIGR01323. While nitrile hydratase is given the specific EC number 4.2.1.84, nitriles are a class of compounds, and one genome may carry more than one nitrile hydratase. The enzyme occurs in both non-heme iron and non-corrin cobalt forms. [Energy metabolism, Amino acids and amines]
Pssm-ID: 274835 Cd Length: 223 Bit Score: 116.78 E-value: 5.28e-30
nitrile hydratase, alpha subunit; This model describes both iron- and cobalt-containing ...
295-495
1.83e-64
nitrile hydratase, alpha subunit; This model describes both iron- and cobalt-containing nitrile hydratase alpha chains. It excludes the thiocyanate hydrolase gamma subunit of Thiobacillus thioparus, a sequence that appears to have evolved from within the family of nitrile hydratase alpha subunits but which differs by several indels and a more rapid accumulation of point mutations. [Energy metabolism, Amino acids and amines]
Pssm-ID: 188130 [Multi-domain] Cd Length: 189 Bit Score: 207.23 E-value: 1.83e-64
Nitrile hydratase beta subunit; Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that ...
7-210
2.13e-31
Nitrile hydratase beta subunit; Nitrile hydratases EC:4.2.1.84 are unusual metalloenzymes that catalyze the hydration of nitriles to their corresponding amides. They are used as biocatalysts in acrylamide production, one of the few commercial scale bioprocesses, as well as in environmental remediation for the removal of nitriles from waste streams. Nitrile hydratases are composed of two subunits, alpha and beta, and they contain one iron atom per alpha beta unit.
Pssm-ID: 426662 Cd Length: 223 Bit Score: 120.43 E-value: 2.13e-31
nitrile hydratase, beta subunit; Members of this protein family are the beta subunit of ...
7-209
5.28e-30
nitrile hydratase, beta subunit; Members of this protein family are the beta subunit of nitrile hydratase. The alpha subunit is represented by model TIGR01323. While nitrile hydratase is given the specific EC number 4.2.1.84, nitriles are a class of compounds, and one genome may carry more than one nitrile hydratase. The enzyme occurs in both non-heme iron and non-corrin cobalt forms. [Energy metabolism, Amino acids and amines]
Pssm-ID: 274835 Cd Length: 223 Bit Score: 116.78 E-value: 5.28e-30
NHLP leader peptide domain; This model represents a domain that is conserved among a large ...
419-478
2.26e-03
NHLP leader peptide domain; This model represents a domain that is conserved among a large number of putative ribosomal natural products (RNP) precursor, including the thiazole/oxazole-modified microcins (TOMMs). As a leader peptide domain, likely to be removed from the mature product, this domain is unusual in several ways. First, it is longer than most previously described RNP leader peptides. Second, most of the domain is homologous to nitrile hydratase alpha subunits. Finally, it appears that this domain correlates with a specific family of cleavage/export proteins while members undergo modifications by different classes of peptide maturase, including cyclodehydratases, lantibiotic synthases, radical SAM peptide maturases. This family is expanded especially in Pelotomaculum thermopropionicum SI. [Cellular processes, Biosynthesis of natural products]
Pssm-ID: 274786 [Multi-domain] Cd Length: 77 Bit Score: 36.91 E-value: 2.26e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options