NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|189306|gb|AAA59954|]
View 

nucleolin [Homo sapiens]

Protein Classification

nucleolin( domain architecture ID 10189315)

nucleolin is the major nucleolar protein of growing eukaryotic cells and may play a role in pre-rRNA transcription and ribosome assembly, as well as in the process of transcriptional elongation

CATH:  3.30.70.330
Gene Symbol:  NCL
Gene Ontology:  GO:0003723|GO:0042162|GO:0005730
SCOP:  3000110

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
390-465 6.91e-38

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


:

Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 135.25  E-value: 6.91e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   390 RDARTLLAKNLPYKVTQDELKEVFEDAAEIRLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTG 465
Cdd:cd12404   1 RDARTLFVKNLPYSTTQDELKEVFEDAVDIRIPMgRDGRSKGIAYIEFKSEAEAEKALEEKQGTEVDGRSIVVDYTG 77
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
572-646 6.60e-37

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


:

Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 132.73  E-value: 6.60e-37
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   572 KTLFVKGLSEDTTEETLKESFDGSVRARIVTDRETGSSKGFGFVDFNSEED---AKEAMEDGEIDGNKVTLDWAKPKG 646
Cdd:cd12406   1 KTLFVKGLSEDTTEETLKEAFEGAISARIATDRDTGSSKGFGFVDFSSEEDakaAKEAMEDGEIDGNKVTLDFAKPKG 78
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
485-557 3.47e-35

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


:

Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 127.68  E-value: 3.47e-35
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKATFIKVPQNqNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12405   1 SKTLVVNNLSYSATEESLQSVFEKATSIRIPQN-NGRPKGYAFVEFESVEDAKEALESCNNTEIEGRSIRLEF 72
RRM1_NCL cd12403
RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to ...
307-381 1.25e-34

RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to the RRM1 of ubiquitously expressed protein nucleolin, also termed protein C23. Nucleolin is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. RRM1, together with RRM2, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


:

Pssm-ID: 409837 [Multi-domain]  Cd Length: 75  Bit Score: 125.99  E-value: 1.25e-34
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   307 FNLFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLEKP 381
Cdd:cd12403   1 FSLFVGNLNSNKSFEELKTAISEFFAKKDLAVVDVRIGSSKKFGYVDFESAEDLEKALELNGKKVLGNEIKLEKA 75
 
Name Accession Description Interval E-value
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
390-465 6.91e-38

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 135.25  E-value: 6.91e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   390 RDARTLLAKNLPYKVTQDELKEVFEDAAEIRLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTG 465
Cdd:cd12404   1 RDARTLFVKNLPYSTTQDELKEVFEDAVDIRIPMgRDGRSKGIAYIEFKSEAEAEKALEEKQGTEVDGRSIVVDYTG 77
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
572-646 6.60e-37

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 132.73  E-value: 6.60e-37
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   572 KTLFVKGLSEDTTEETLKESFDGSVRARIVTDRETGSSKGFGFVDFNSEED---AKEAMEDGEIDGNKVTLDWAKPKG 646
Cdd:cd12406   1 KTLFVKGLSEDTTEETLKEAFEGAISARIATDRDTGSSKGFGFVDFSSEEDakaAKEAMEDGEIDGNKVTLDFAKPKG 78
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
485-557 3.47e-35

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 127.68  E-value: 3.47e-35
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKATFIKVPQNqNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12405   1 SKTLVVNNLSYSATEESLQSVFEKATSIRIPQN-NGRPKGYAFVEFESVEDAKEALESCNNTEIEGRSIRLEF 72
RRM1_NCL cd12403
RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to ...
307-381 1.25e-34

RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to the RRM1 of ubiquitously expressed protein nucleolin, also termed protein C23. Nucleolin is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. RRM1, together with RRM2, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409837 [Multi-domain]  Cd Length: 75  Bit Score: 125.99  E-value: 1.25e-34
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   307 FNLFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLEKP 381
Cdd:cd12403   1 FSLFVGNLNSNKSFEELKTAISEFFAKKDLAVVDVRIGSSKKFGYVDFESAEDLEKALELNGKKVLGNEIKLEKA 75
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
309-636 7.36e-30

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 124.92  E-value: 7.36e-30
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     309 LFVGNLNFNKSAPELktgiSDVFA--KNDLAVVDVRIGMTRK---FGYVDFESAEDLEKALELTGLK-VFGNEIKLEKPK 382
Cdd:TIGR01628   3 LYVGDLDPDVTEAKL----YDLFKpfGPVLSVRVCRDSVTRRslgYGYVNFQNPADAERALETMNFKrLGGKPIRIMWSQ 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     383 GKDSKKERDARTLLAKNLPYKVTQDELKEVFEDAAEIrLVSK-----DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGR 457
Cdd:TIGR01628  79 RDPSLRRSGVGNIFVKNLDKSVDNKALFDTFSKFGNI-LSCKvatdeNGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDK 157
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     458 SIslyYTGEKGQNQDyRGGKNSTwsgESKTLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFE 534
Cdd:TIGR01628 158 EV---YVGRFIKKHE-REAAPLK---KFTNLYVKNLDPSVNEDKLRELFAKfgeITSAAVMKDGSGRSRGFAFVNFEKHE 230
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     535 DAKEALNSCNKREIEGRAIRLELQGPRGSPNARSQPSK------------------TLFVKGLSEDTTEETLKESFD--G 594
Cdd:TIGR01628 231 DAAKAVEEMNGKKIGLAKEGKKLYVGRAQKRAEREAELrrkfeelqqerkmkaqgvNLYVKNLDDTVTDEKLRELFSecG 310
                         330       340       350       360
                  ....*....|....*....|....*....|....*....|....
gi 189306     595 SVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMED--GEIDGNK 636
Cdd:TIGR01628 311 EITSAKVMLDEKGVSRGFGFVCFSNPEEANRAVTEmhGRMLGGK 354
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
571-647 8.42e-20

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 84.38  E-value: 8.42e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDWAKP 644
Cdd:COG0724   1 SMKIYVGNLPYSVTEEDLRELFSeyGEVtSVKLITDRETGRSRGFGFVEMPDDEEAQAAIEalNGaELMGRTLKVNEARP 80

                ...
gi 189306   645 KGE 647
Cdd:COG0724  81 REE 83
RRM smart00360
RNA recognition motif;
573-639 1.22e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 74.94  E-value: 1.22e-16
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306      573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTL 639
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSkfGKVeSVRLVRDKETGKSKGFAFVEFESEEDAEKALEalNGkELDGRPLKV 73
RRM smart00360
RNA recognition motif;
487-555 1.17e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 71.86  E-value: 1.17e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306      487 TLVLSNLSYSATEETLQEVFEKA---TFIKVP-QNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFgkvESVRLVrDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
488-554 5.00e-15

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 69.95  E-value: 5.00e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     488 LVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFgpiKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
485-561 1.68e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 68.97  E-value: 1.68e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:COG0724   1 SMKIYVGNLPYSVTEEDLRELFSEYgevTSVKLITDReTGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARP 80

                .
gi 189306   561 R 561
Cdd:COG0724  81 R 81
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
574-637 2.55e-13

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 65.33  E-value: 2.55e-13
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306     574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDrETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNKV 637
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSkfGPIkSIRLVRD-ETGRSKGFAFVEFEDEEDAEKAIEalNGKELGGRE 68
RRM smart00360
RNA recognition motif;
394-459 2.98e-13

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 65.31  E-value: 2.98e-13
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306      394 TLLAKNLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVrlvrdKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPL 71
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
398-459 1.48e-12

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 63.02  E-value: 1.48e-12
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306     398 KNLPYKVTQDELKEVFEDAA---EIRLVSK-DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:pfam00076   4 GNLPPDTTEEDLKDLFSKFGpikSIRLVRDeTGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
399-459 1.53e-12

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 63.58  E-value: 1.53e-12
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS--KD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:COG0724   8 NLPYSVTEEDLRELFSEYGEVTSVKliTDretGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTL 73
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
571-642 2.50e-10

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 59.28  E-value: 2.50e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306    571 SKTLFVKGLSEDTTEETLKE---SFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDWA 642
Cdd:PLN03134  34 STKLFIGGLSWGTDDASLRDafaHFGDVVDAKVIVDRETGRSRGFGFVNFNDEGAATAAiseMDGKELNGRHIRVNPA 111
RRM smart00360
RNA recognition motif;
308-378 4.56e-07

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 47.59  E-value: 4.56e-07
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306      308 NLFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKL 378
Cdd:smart00360   1 TLFVGNLPPDTTEEELR----ELFSKFG-KVESVRLvrdketGKSKGFAFVEFESEEDAEKALEaLNGKELDGRPLKV 73
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
499-647 4.91e-07

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 53.08  E-value: 4.91e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     499 EETLQEVFEKATFI---KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIE-GRAIRLelqgprgspnARSQPSKTL 574
Cdd:TIGR01648  72 EDELVPLFEKAGPIyelRLMMDFSGQNRGYAFVTFCGKEEAKEAVKLLNNYEIRpGRLLGV----------CISVDNCRL 141
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     575 FVKGLSEDTTEETLKESF----DGSVRArIVTDRETGSSK--GFGFVDFNSEEDAKEA---MEDGEID--GNKVTLDWAK 643
Cdd:TIGR01648 142 FVGGIPKNKKREEILEEFskvtEGVVDV-IVYHSAADKKKnrGFAFVEYESHRAAAMArrkLMPGRIQlwGHVIAVDWAE 220

                  ....
gi 189306     644 PKGE 647
Cdd:TIGR01648 221 PEEE 224
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
309-377 1.91e-06

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 45.69  E-value: 1.91e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306     309 LFVGNLNFNKSAPELKtgisDVFAK----NDLAVVDVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIK 377
Cdd:pfam00076   1 LFVGNLPPDTTEEDLK----DLFSKfgpiKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEaLNGKELGGRELK 70
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
484-626 7.31e-06

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 49.12  E-value: 7.31e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     484 ESKTLVLSNLSYSATEETLQEVFEkATFIKVPQNQNG-----------KSKGYAFIEFASFEDAKEAL--------NSCN 544
Cdd:TIGR01642 174 QARRLYVGGIPPEFVEEAVVDFFN-DLMIATGYHKAEdgkhvssvninKEKNFAFLEFRTVEEATFAMaldsiiysNVFL 252
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     545 KRE-----IEGRAIRLELQGPRGSPNA----RSQPSKT-------LFVKGLSEDTTEETLKE---SFdGSVRA-RIVTDR 604
Cdd:TIGR01642 253 KIRrphdyIPVPQITPEVSQKNPDDNAknveKLVNSTTvldskdrIYIGNLPLYLGEDQIKElleSF-GDLKAfNLIKDI 331
                         170       180
                  ....*....|....*....|..
gi 189306     605 ETGSSKGFGFVDFNSEEDAKEA 626
Cdd:TIGR01642 332 ATGLSKGYAFCEYKDPSVTDVA 353
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
308-380 8.36e-05

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 41.62  E-value: 8.36e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   308 NLFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLEK 380
Cdd:COG0724   3 KIYVGNLPYSVTEEDLR----ELFSEYG-EVTSVKLitdretGRSRGFGFVEMPDDEEAQAAIEaLNGAELMGRTLKVNE 77
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
485-563 5.29e-03

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 38.10  E-value: 5.29e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306    485 SKTLVLSNLSYSATEETLQEVFekATFIKVPQ------NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQ 558
Cdd:PLN03134  34 STKLFIGGLSWGTDDASLRDAF--AHFGDVVDakvivdRETGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPA 111

                 ....*
gi 189306    559 GPRGS 563
Cdd:PLN03134 112 NDRPS 116
 
Name Accession Description Interval E-value
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
390-465 6.91e-38

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 135.25  E-value: 6.91e-38
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   390 RDARTLLAKNLPYKVTQDELKEVFEDAAEIRLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTG 465
Cdd:cd12404   1 RDARTLFVKNLPYSTTQDELKEVFEDAVDIRIPMgRDGRSKGIAYIEFKSEAEAEKALEEKQGTEVDGRSIVVDYTG 77
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
572-646 6.60e-37

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 132.73  E-value: 6.60e-37
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   572 KTLFVKGLSEDTTEETLKESFDGSVRARIVTDRETGSSKGFGFVDFNSEED---AKEAMEDGEIDGNKVTLDWAKPKG 646
Cdd:cd12406   1 KTLFVKGLSEDTTEETLKEAFEGAISARIATDRDTGSSKGFGFVDFSSEEDakaAKEAMEDGEIDGNKVTLDFAKPKG 78
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
485-557 3.47e-35

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 127.68  E-value: 3.47e-35
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKATFIKVPQNqNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12405   1 SKTLVVNNLSYSATEESLQSVFEKATSIRIPQN-NGRPKGYAFVEFESVEDAKEALESCNNTEIEGRSIRLEF 72
RRM1_NCL cd12403
RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to ...
307-381 1.25e-34

RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to the RRM1 of ubiquitously expressed protein nucleolin, also termed protein C23. Nucleolin is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. RRM1, together with RRM2, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409837 [Multi-domain]  Cd Length: 75  Bit Score: 125.99  E-value: 1.25e-34
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   307 FNLFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLEKP 381
Cdd:cd12403   1 FSLFVGNLNSNKSFEELKTAISEFFAKKDLAVVDVRIGSSKKFGYVDFESAEDLEKALELNGKKVLGNEIKLEKA 75
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
309-636 7.36e-30

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 124.92  E-value: 7.36e-30
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     309 LFVGNLNFNKSAPELktgiSDVFA--KNDLAVVDVRIGMTRK---FGYVDFESAEDLEKALELTGLK-VFGNEIKLEKPK 382
Cdd:TIGR01628   3 LYVGDLDPDVTEAKL----YDLFKpfGPVLSVRVCRDSVTRRslgYGYVNFQNPADAERALETMNFKrLGGKPIRIMWSQ 78
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     383 GKDSKKERDARTLLAKNLPYKVTQDELKEVFEDAAEIrLVSK-----DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGR 457
Cdd:TIGR01628  79 RDPSLRRSGVGNIFVKNLDKSVDNKALFDTFSKFGNI-LSCKvatdeNGKSRGYGFVHFEKEESAKAAIQKVNGMLLNDK 157
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     458 SIslyYTGEKGQNQDyRGGKNSTwsgESKTLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFE 534
Cdd:TIGR01628 158 EV---YVGRFIKKHE-REAAPLK---KFTNLYVKNLDPSVNEDKLRELFAKfgeITSAAVMKDGSGRSRGFAFVNFEKHE 230
                         250       260       270       280       290       300       310       320
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     535 DAKEALNSCNKREIEGRAIRLELQGPRGSPNARSQPSK------------------TLFVKGLSEDTTEETLKESFD--G 594
Cdd:TIGR01628 231 DAAKAVEEMNGKKIGLAKEGKKLYVGRAQKRAEREAELrrkfeelqqerkmkaqgvNLYVKNLDDTVTDEKLRELFSecG 310
                         330       340       350       360
                  ....*....|....*....|....*....|....*....|....
gi 189306     595 SVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMED--GEIDGNK 636
Cdd:TIGR01628 311 EITSAKVMLDEKGVSRGFGFVCFSNPEEANRAVTEmhGRMLGGK 354
PABP-1234 TIGR01628
polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins ...
394-640 6.89e-26

polyadenylate binding protein, human types 1, 2, 3, 4 family; These eukaryotic proteins recognize the poly-A of mRNA and consists of four tandem RNA recognition domains at the N-terminus (rrm: pfam00076) followed by a PABP-specific domain (pfam00658) at the C-terminus. The protein is involved in the transport of mRNA's from the nucleus to the cytoplasm. There are four paralogs in Homo sapiens which are expressed in testis, platelets, broadly expressed and of unknown tissue range.


Pssm-ID: 130689 [Multi-domain]  Cd Length: 562  Bit Score: 112.59  E-value: 6.89e-26
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     394 TLLAKNLPYKVTQDELKEVFEDA---AEIRlVSKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYtgek 467
Cdd:TIGR01628   2 SLYVGDLDPDVTEAKLYDLFKPFgpvLSVR-VCRDsvtRRSLGYGYVNFQNPADAERALETMNFKRLGGKPIRIMW---- 76
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     468 gQNQD----YRGGKNstwsgesktLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFEDAKEAL 540
Cdd:TIGR01628  77 -SQRDpslrRSGVGN---------IFVKNLDKSVDNKALFDTFSKfgnILSCKVATDENGKSRGYGFVHFEKEESAKAAI 146
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     541 NSCNKREIEGRAIRLELQGPRGSPNARSQPSKT-LFVKGLSEDTTEETLKESFD--GSVRARIVTDRETGSSKGFGFVDF 617
Cdd:TIGR01628 147 QKVNGMLLNDKEVYVGRFIKKHEREAAPLKKFTnLYVKNLDPSVNEDKLRELFAkfGEITSAAVMKDGSGRSRGFAFVNF 226
                         250       260
                  ....*....|....*....|...
gi 189306     618 NSEEDAKEAMEdgEIDGNKVTLD 640
Cdd:TIGR01628 227 EKHEDAAKAVE--EMNGKKIGLA 247
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
379-555 1.42e-20

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 95.76  E-value: 1.42e-20
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     379 EKPKGKDSKK------ERDARTLLAKNLPYKVTQDELKEVFEDAA---EIRLVS--KDGKSKGIAYIEFKTEADAEKTFE 447
Cdd:TIGR01622  95 EKPRARDGTPepltedERDRRTVFVQQLAARARERDLYEFFSKVGkvrDVQIIKdrNSRRSKGVGYVEFYDVDSVQAALA 174
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     448 eKQGTEIDGRSISLYYTgEKGQNQDYRGGKNSTWSGESKT----LVLSNLSYSATEETLQEVFE---KATFIKVPQNQN- 519
Cdd:TIGR01622 175 -LTGQKLLGIPVIVQLS-EAEKNRAARAATETSGHHPNSIpfhrLYVGNLHFNITEQDLRQIFEpfgEIEFVQLQKDPEt 252
                         170       180       190
                  ....*....|....*....|....*....|....*.
gi 189306     520 GKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:TIGR01622 253 GRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPIKV 288
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
571-647 8.42e-20

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 84.38  E-value: 8.42e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDWAKP 644
Cdd:COG0724   1 SMKIYVGNLPYSVTEEDLRELFSeyGEVtSVKLITDRETGRSRGFGFVEMPDDEEAQAAIEalNGaELMGRTLKVNEARP 80

                ...
gi 189306   645 KGE 647
Cdd:COG0724  81 REE 83
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
488-556 2.26e-17

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 76.94  E-value: 2.26e-17
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   488 LVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKFgevVSVRIVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPLKVS 72
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
573-642 3.99e-17

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 76.32  E-value: 3.99e-17
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   573 TLFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAK---EAMEDGEIDGNKVTLDWA 642
Cdd:cd12447   1 TLFVGGLSWNVDDPWLKkefEKYGGVISARVITDRGSGRSKGYGYVDFATPEAAQkalAAMSGKEIDGRQINVDFS 76
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
484-559 7.83e-17

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 75.54  E-value: 7.83e-17
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEKATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQG 559
Cdd:cd12404   2 DARTLFVKNLPYSTTQDELKEVFEDAVDIRIPMGRDGRSKGIAYIEFKSEAEAEKALEEKQGTEVDGRSIVVDYTG 77
RRM smart00360
RNA recognition motif;
573-639 1.22e-16

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 74.94  E-value: 1.22e-16
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306      573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTL 639
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSkfGKVeSVRLVRDKETGKSKGFAFVEFESEEDAEKALEalNGkELDGRPLKV 73
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
570-642 1.16e-15

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 72.30  E-value: 1.16e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   570 PSKTLFVKGLSEDTTEETLKESFDGSVRA-----RIVTDRETGSSKGFGFVDFNSEEDAKEAMED-------GEIDGNKV 637
Cdd:cd12313   1 PTNVLILRGLDVLTTEEDILSALQAHADLpikdvRLIRDKLTGTSRGFAFVEFSSLEDATQVMDAlqnllppFKIDGRVV 80

                ....*
gi 189306   638 TLDWA 642
Cdd:cd12313  81 SVSYA 85
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
573-642 1.16e-15

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 72.20  E-value: 1.16e-15
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDWA 642
Cdd:cd21608   1 KLYVGNLSWDTTEDDLRDLFSefGEVeSAKVITDRETGRSRGFGFVTFSTAEAAEAAidaLNGKELDGRSIVVNEA 76
RRM smart00360
RNA recognition motif;
487-555 1.17e-15

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 71.86  E-value: 1.17e-15
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306      487 TLVLSNLSYSATEETLQEVFEKA---TFIKVP-QNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFgkvESVRLVrDKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPLKV 73
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
488-554 5.00e-15

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 69.95  E-value: 5.00e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     488 LVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFgpiKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEALNGKELGGRELK 70
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
574-645 9.01e-15

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 69.82  E-value: 9.01e-15
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGE-IDGNKVTLDWAKPK 645
Cdd:cd12449   3 LFVGGLSFDTNEQSLEEVFSkyGQIsEVVVVKDRETQRSRGFGFVTFENPDDAKDAMMamNGKsLDGRQIRVDQAGKS 80
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
485-561 1.68e-14

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 68.97  E-value: 1.68e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:COG0724   1 SMKIYVGNLPYSVTEEDLRELFSEYgevTSVKLITDReTGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTLKVNEARP 80

                .
gi 189306   561 R 561
Cdd:COG0724  81 R 81
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
571-642 2.65e-14

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 68.41  E-value: 2.65e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME---DGEIDGNKVTLDWA 642
Cdd:cd12363   1 SRCLGVFGLSLYTTERDLREVFSryGPIeKVQVVYDQQTGRSRGFGFVYFESVEDAKEAKErlnGQEIDGRRIRVDYS 78
RRM3_NCL cd12405
RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to ...
392-463 3.41e-14

RNA recognition motif 3 (RRM3) found in vertebrate nucleolin; This subfamily corresponds to the RRM3 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409839 [Multi-domain]  Cd Length: 72  Bit Score: 67.98  E-value: 3.41e-14
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   392 ARTLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12405   1 SKTLVVNNLSYSATEESLQSVFEKATSIRIPQNNGRPKGYAFVEFESVEDAKEALESCNNTEIEGRSIRLEF 72
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
573-628 3.75e-14

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 67.92  E-value: 3.75e-14
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESF--DGSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12408   1 TIRVTNLSEDATEEDLRELFrpFGPIsRVYLAKDKETGQSKGFAFVTFETREDAERAIE 59
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
395-459 6.38e-14

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 66.92  E-value: 6.38e-14
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIR----LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSKFGEVVsvriVRDRDGKSKGFAFVEFESPEDAEKALEALNGTELGGRPL 69
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
574-640 1.04e-13

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 66.66  E-value: 1.04e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG---EIDGNKVTLD 640
Cdd:cd12448   1 LFVGNLPFSATQDALYEAFSqhGSIvSVRLPTDRETGQPKGFGYVDFSTIDSAEAAIDALggeYIDGRPIRLD 73
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
573-629 1.47e-13

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 66.14  E-value: 1.47e-13
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   573 TLFVKGLSEDTTEETLKESFDG---SVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd12345   3 SLFVGDLAPDVTDYQLYETFSArypSVRgAKVVMDPVTGRSKGYGFVRFGDESEQDRALTE 63
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
570-640 2.16e-13

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 66.20  E-value: 2.16e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   570 PSKTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG---EIDGNKVTLD 640
Cdd:cd12237   3 PRLTLFVGRLSLQTTEEKLKEVFSryGDIRRlRLVRDIVTGFSKRYAFIEYKEERDALHAYRDAkklVIDQYEIFVD 79
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
574-640 2.22e-13

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 65.38  E-value: 2.22e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDREtGSSKGFGFVDFNSEEDAKEAMED---GEIDGNKVTLD 640
Cdd:cd00590   1 LFVGNLPPDTTEEDLRELFSkfGEVvSVRIVRDRD-GKSKGFAFVEFESPEDAEKALEAlngTELGGRPLKVS 72
RRM2_NCL cd12404
RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to ...
571-641 2.28e-13

RNA recognition motif 2 (RRM2) found in vertebrate nucleolin; This subfamily corresponds to the RRM2 of ubiquitously expressed protein nucleolin, also termed protein C23, a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.RRM2, together with RRM1, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409838 [Multi-domain]  Cd Length: 77  Bit Score: 65.53  E-value: 2.28e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   571 SKTLFVKGLSEDTTEETLKESFDGSVRARIVTDREtGSSKGFGFVDFNSEEDAKEAMED---GEIDGNKVTLDW 641
Cdd:cd12404   3 ARTLFVKNLPYSTTQDELKEVFEDAVDIRIPMGRD-GRSKGIAYIEFKSEAEAEKALEEkqgTEVDGRSIVVDY 75
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
574-637 2.55e-13

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 65.33  E-value: 2.55e-13
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306     574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDrETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNKV 637
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSkfGPIkSIRLVRD-ETGRSKGFAFVEFEDEEDAEKAIEalNGKELGGRE 68
RRM smart00360
RNA recognition motif;
394-459 2.98e-13

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 65.31  E-value: 2.98e-13
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306      394 TLLAKNLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVrlvrdKETGKSKGFAFVEFESEEDAEKALEALNGKELDGRPL 71
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
574-637 3.02e-13

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 65.24  E-value: 3.02e-13
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE--IDGNKV 637
Cdd:cd12325   1 LFVGGLSWETTEESLREYFSkyGEVvDCVVMKDPATGRSRGFGFVTFKDPSSVDAVLAARPhtLDGRTI 69
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
573-645 3.09e-13

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 65.31  E-value: 3.09e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME---DGEIDGNKVTLDWAKPK 645
Cdd:cd12413   1 TLFVRNLPYDTTDEQLEELFSdvGPVkRCFVVKDKGKDKCRGFGYVTFALAEDAQRALEevkGKKFGGRKIKVELAKKK 79
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
488-553 3.50e-13

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 65.27  E-value: 3.50e-13
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFI---KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12414   2 LIVRNLPFKCTEDDLKKLFSKFGKVlevTIPKKPDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKGRPV 70
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
487-551 3.52e-13

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 64.94  E-value: 3.52e-13
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   487 TLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGR 551
Cdd:cd12391   1 TVFVSNLDYSVPEDKIREIFSGCgeiTDVRLVKNYKGKSKGYCYVEFKDEESAQKAL-KLDRQPVEGR 67
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
572-640 7.92e-13

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 64.56  E-value: 7.92e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEA--MEDG-EIDGNKVTLD 640
Cdd:cd12236   2 KTLFVARLSYDTTESKLRREFEkyGPIkRVRLVRDKKTGKSRGYAFIEFEHERDMKAAykHADGkKIDGRRVLVD 76
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
492-556 9.80e-13

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 63.79  E-value: 9.80e-13
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   492 NLSYSATEETLQEVFEKatFIK------VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12363   8 GLSLYTTERDLREVFSR--YGPiekvqvVYDQQTGRSRGFGFVYFESVEDAKEAKERLNGQEIDGRRIRVD 76
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
564-640 1.01e-12

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 65.03  E-value: 1.01e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   564 PNARSQPSKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG------EIDG 634
Cdd:cd21615  11 HIADGDPYKTLFVGRLDYSLTELELQKKFSkfGEIeKIRIVRDKETGKSRGYAFIVFKSESDAKNAFKEGnglrglKIND 90

                ....*.
gi 189306   635 NKVTLD 640
Cdd:cd21615  91 RTCIVD 96
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
572-642 1.40e-12

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 63.30  E-value: 1.40e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDWA 642
Cdd:cd12398   1 RSVFVGNIPYDATEEQLKEIFSevGPVVsFRLVTDRETGKPKGYGFCEFRDAETALSAVRnlNGyELNGRPLRVDFA 77
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
398-459 1.48e-12

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 63.02  E-value: 1.48e-12
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306     398 KNLPYKVTQDELKEVFEDAA---EIRLVSK-DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:pfam00076   4 GNLPPDTTEEDLKDLFSKFGpikSIRLVRDeTGRSKGFAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
399-459 1.53e-12

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 63.58  E-value: 1.53e-12
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS--KD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:COG0724   8 NLPYSVTEEDLRELFSEYGEVTSVKliTDretGRSRGFGFVEMPDDEEAQAAIEALNGAELMGRTL 73
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
394-467 2.04e-12

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 63.19  E-value: 2.04e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSISLYYTGEK 467
Cdd:cd12450   1 TLFVGNLSWSATQDDLENFFSDCGEVVDVriamdRDDGRSKGFGHVEFASAESAQKAL-EKSGQDLGGREIRLDLANER 78
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
572-645 2.25e-12

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 62.87  E-value: 2.25e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDWAKPK 645
Cdd:cd12674   1 TTLFVRNLPFDVTLESLTDFFSdiGPVKhAVVVTDPETKKSRGYGFVSFSTHDDAEEAlakLKNRKLSGHILKLDFAKPR 80
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
492-554 4.75e-12

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 61.76  E-value: 4.75e-12
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   492 NLSYSATEETLQEVFEKA----TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12398   7 NIPYDATEEQLKEIFSEVgpvvSFRLVTDRETGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPLR 73
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
488-555 4.89e-12

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 61.87  E-value: 4.89e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   488 LVLSNLSYSATEETLQEVFE---KATFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12284   1 LYVGSLHFNITEDMLRGIFEpfgKIEFVQLQKDPeTGRSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKV 72
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
486-553 4.95e-12

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 62.25  E-value: 4.95e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12236   2 KTLFVARLSYDTTESKLRREFEKYGPIKrvrlVRDKKTGKSRGYAFIEFEHERDMKAAYKHADGKKIDGRRV 73
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
470-627 5.39e-12

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 67.73  E-value: 5.39e-12
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     470 NQDYRGGKNSTWSGESKT-LVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCN 544
Cdd:TIGR01659  91 NSLGSGGSDDNDTNNSGTnLIVNYLPQDMTDRELYALFRTIGPINtcriMRDYKTGYSFGYAFVDFGSEADSQRAIKNLN 170
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     545 KreIEGRAIRLELQGPRgsPNARSQPSKTLFVKGLSEDTTEETLKESFD--GS-VRARIVTDRETGSSKGFGFVDFNSEE 621
Cdd:TIGR01659 171 G--ITVRNKRLKVSYAR--PGGESIKDTNLYVTNLPRTITDDQLDTIFGkyGQiVQKNILRDKLTGTPRGVAFVRFNKRE 246

                  ....*.
gi 189306     622 DAKEAM 627
Cdd:TIGR01659 247 EAQEAI 252
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
572-628 5.86e-12

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 61.85  E-value: 5.86e-12
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12415   1 KTVFIRNLSFDTTEEDLKEFFSkfGEVKyARIVLDKDTGHSKGTAFVQFKTKESADKCIE 60
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
571-643 6.51e-12

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 62.44  E-value: 6.51e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGEIDGNKVTLDWAK 643
Cdd:cd12676   1 GRTLFVRNLPFDATEDELYSHFSqfGPLKyARVVKDPATGRSKGTAFVKFKNKEDADNCLSAAPEAQSTSLLEKYS 76
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
488-556 8.15e-12

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 61.27  E-value: 8.15e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFEK---ATFIKVPQN-QNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12448   1 LFVGNLPFSATQDALYEAFSQhgsIVSVRLPTDrETGQPKGFGYVDFSTIDSAEAAIDALGGEYIDGRPIRLD 73
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
391-460 8.68e-12

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 61.19  E-value: 8.68e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   391 DARTLLAKNLPYKVTQDELKEVFE---DAAEIRLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12392   1 EKNKLFVKGLPFSCTKEELEELFKqhgTVKDVRLVTyRNGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTIS 74
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
486-561 9.18e-12

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 61.33  E-value: 9.18e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPR 561
Cdd:cd12674   1 TTLFVRNLPFDVTLESLTDFFSDIGPVKhavvVTDPETKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKLDFAKPR 80
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
487-557 1.29e-11

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 60.78  E-value: 1.29e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   487 TLVLSNLSYSATEETLQEVF----EKATFIKVPQN-QNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12344   1 TLWMGDLEPWMDEAYISSCFaktgEEVVSVKIIRNkQTGKSAGYCFVEFATQEAAEQALEHLNGKPIPNTQQRFRL 76
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
570-639 1.35e-11

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 60.70  E-value: 1.35e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   570 PSKTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDREtGSSKGFGFVDFNSEEDAKEAMEDGE---IDGNKVTL 639
Cdd:cd12412   1 IPNRIFVGGIDWDTTEEELREFFSkfGKVKdVKIIKDRA-GVSKGYGFVTFETQEDAEKIQKWGAnlvFKGKKLNV 75
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
573-645 1.80e-11

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 60.49  E-value: 1.80e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   573 TLFVKGLSEDTTEETLKESFD---GSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNKVTLDWAKPK 645
Cdd:cd12450   1 TLFVGNLSWSATQDDLENFFSdcgEVVDVRIAMDRDDGRSKGFGHVEFASAESAQKALEksGQDLGGREIRLDLANER 78
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
492-554 2.21e-11

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 59.88  E-value: 2.21e-11
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFEKatFIKVPQNQ------NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd21608   6 NLSWDTTEDDLRDLFSE--FGEVESAKvitdreTGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSIV 72
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
574-642 2.70e-11

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 59.69  E-value: 2.70e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE--IDGNKVTLDWA 642
Cdd:cd12384   3 IFVGGLPYHTTDDSLREYFEqfGEIEeAVVITDRQTGKSRGYGFVTMADREAAERACKDPNpiIDGRKANVNLA 76
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
487-557 3.05e-11

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 59.76  E-value: 3.05e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   487 TLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12447   1 TLFVGGLSWNVDDPWLKKEFEKYGGVIsarvITDRGSGRSKGYGYVDFATPEAAQKALAAMSGKEIDGRQINVDF 75
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
487-561 3.71e-11

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 59.34  E-value: 3.71e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   487 TLVLSNLSYSATEETLQEVFEKA---TFIKVPQN-QNGKSKGYAFIEFASFEDAKEALNScNKREIEGRAIRLELQGPR 561
Cdd:cd12450   1 TLFVGNLSWSATQDDLENFFSDCgevVDVRIAMDrDDGRSKGFGHVEFASAESAQKALEK-SGQDLGGREIRLDLANER 78
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
484-646 4.21e-11

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 64.96  E-value: 4.21e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     484 ESKT-LVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELq 558
Cdd:TIGR01661   1 ESKTnLIVNYLPQTMTQEEIRSLFTSIGEIEscklVRDKVTGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSY- 79
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     559 gprGSPNARSQPSKTLFVKGLSEDTTE---ETLKESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEdgeidgn 635
Cdd:TIGR01661  80 ---ARPSSDSIKGANLYVSGLPKTMTQhelESIFSPFGQIITSRILSDNVTGLSKGVGFIRFDKRDEADRAIK------- 149
                         170
                  ....*....|.
gi 189306     636 kvTLDWAKPKG 646
Cdd:TIGR01661 150 --TLNGTTPSG 158
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
572-639 4.87e-11

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 59.16  E-value: 4.87e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   572 KTLFVKGLSEDTTEETLKESFDGSVRARIVT-----DRETGS-SKGFGFVDFNSEEDAKEAMED---GEIDGNKVTL 639
Cdd:cd12318   1 TTLFVKNLNFKTTEEALKKHFEKCGPIRSVTiakkkDPKGPLlSMGYGFVEFKSPEAAQKALKQlqgTVLDGHALEL 77
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
574-642 5.26e-11

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 59.05  E-value: 5.26e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   574 LFVKGLSEDTTEETLKESFDG---SVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGE-IDGNKVTLDWA 642
Cdd:cd12619   4 IFVGDLSPEVTDAALFNAFSDfpsCSDARVMWDQKTGRSRGYGFVSFRSQQDAQNAINsmNGKwLGSRPIRCNWA 78
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
487-557 5.62e-11

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 58.74  E-value: 5.62e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   487 TLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12418   2 RVRVSNLHPDVTEEDLRELFGRVgpvKSVKINYDRSGRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMKVEL 75
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
574-638 6.34e-11

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 58.72  E-value: 6.34e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVT 638
Cdd:cd12365   1 LHVGKLTRNVTKDHLKEIFSvyGTVKNvDLPIDREPNLPRGYAYVEFESPEDAEKAikhMDGGQIDGQEVT 71
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
394-457 8.93e-11

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 58.01  E-value: 8.93e-11
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEI---RLVSKD-GKSKGIAYIEFKTEADAEKTFeEKQGTEIDGR 457
Cdd:cd12391   1 TVFVSNLDYSVPEDKIREIFSGCGEItdvRLVKNYkGKSKGYCYVEFKDEESAQKAL-KLDRQPVEGR 67
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
395-461 9.77e-11

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 58.33  E-value: 9.77e-11
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   395 LLAKNLPYKVTQDELKEVFEDA---AEIRLVSK-DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12414   2 LIVRNLPFKCTEDDLKKLFSKFgkvLEVTIPKKpDGKLRGFAFVQFTNVADAAKAIKGMNGKKIKGRPVAV 72
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
395-457 1.61e-10

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 57.35  E-value: 1.61e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGR 457
Cdd:cd12316   2 LFVRNLPFTATEDELRELFEAFGKISEVhipldKQTKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGR 69
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
573-640 1.72e-10

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 57.42  E-value: 1.72e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   573 TLFVKG----LSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME-DG-EIDGNKVTLD 640
Cdd:cd12451   1 TIFVKGfdasLGEDTIRDELREHFGecGEVtNVRIPTDRETGELKGFAYIEFSTKEAKEKALElNGsDIAGGNLVVD 77
RRM2_Hrp1p cd12330
RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
574-645 1.80e-10

RNA recognition motif 2 (RRM2) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway; it binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409767 [Multi-domain]  Cd Length: 78  Bit Score: 57.33  E-value: 1.80e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG--EIDGNKVTLDWAKPK 645
Cdd:cd12330   2 IFVGGLAPDVTEEEFKEYFEqfGTVvDAVVMLDHDTGRSRGFGFVTFDSESAVEKVLSKGfhELGGKKVEVKRATPK 78
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
571-642 2.50e-10

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 59.28  E-value: 2.50e-10
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306    571 SKTLFVKGLSEDTTEETLKE---SFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDWA 642
Cdd:PLN03134  34 STKLFIGGLSWGTDDASLRDafaHFGDVVDAKVIVDRETGRSRGFGFVNFNDEGAATAAiseMDGKELNGRHIRVNPA 111
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
280-459 2.52e-10

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 63.40  E-value: 2.52e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     280 RKKEMAKQKAAPEAKKQKVEGTEPT-TAFNLFVGNLNFNKSAPELKTGISDVFAKNDLAVV-DVRIGMTRKFGYVDFESA 357
Cdd:TIGR01622  87 RDDRRSRREKPRARDGTPEPLTEDErDRRTVFVQQLAARARERDLYEFFSKVGKVRDVQIIkDRNSRRSKGVGYVEFYDV 166
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     358 EDLEKALELTGLKVFGNEIKLEKPKGKDSKKERDART-------------LLAKNLPYKVTQDELKEVFEDAAEIRLV-- 422
Cdd:TIGR01622 167 DSVQAALALTGQKLLGIPVIVQLSEAEKNRAARAATEtsghhpnsipfhrLYVGNLHFNITEQDLRQIFEPFGEIEFVql 246
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|
gi 189306     423 ---SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:TIGR01622 247 qkdPETGRSKGYGFIQFRDAEQAKEALEKMNGFELAGRPI 286
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
484-556 2.93e-10

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 57.28  E-value: 2.93e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEKATFIKVPQ------NQNGKSKGYAFIEFASFEDAKEALNSCN----KREIEGRAI 553
Cdd:cd12313   1 PTNVLILRGLDVLTTEEDILSALQAHADLPIKDvrlirdKLTGTSRGFAFVEFSSLEDATQVMDALQnllpPFKIDGRVV 80

                ...
gi 189306   554 RLE 556
Cdd:cd12313  81 SVS 83
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
490-561 3.83e-10

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 56.46  E-value: 3.83e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   490 LSNLSYSATEETLQEVFE--KATFIKVPQ-NQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLELQGPR 561
Cdd:cd12402   7 LGNLPYDVTEDDIEDFFRglNISSVRLPReNGPGRLRGFGYVEFEDRESLIQAL-SLNEESLKNRRIRVDVAGQA 80
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
486-556 3.83e-10

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 56.75  E-value: 3.83e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKA----TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12671   7 RSVFVGNIPYEATEEQLKDIFSEVgpvvSFRLVYDRETGKPKGYGFCEYQDQETALSAMRNLNGYELNGRALRVD 81
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
394-464 5.04e-10

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 56.29  E-value: 5.04e-10
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEI---RLVSK--DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12447   1 TLFVGGLSWNVDDPWLKKEFEKYGGVisaRVITDrgSGRSKGYGYVDFATPEAAQKALAAMSGKEIDGRQINVDFS 76
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
400-644 5.43e-10

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 62.71  E-value: 5.43e-10
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     400 LPYKVTQDELKEVFEDAA---EIRLVSK-DGKSKGIAYIEFKTEADAEKTFEEKQGTEI-DGRSISLyytgekgqnqdyr 474
Cdd:TIGR01648  66 IPRDLYEDELVPLFEKAGpiyELRLMMDfSGQNRGYAFVTFCGKEEAKEAVKLLNNYEIrPGRLLGV------------- 132
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     475 ggknsTWSGESKTLVLSNLSYSATEETLQEVFEKAT-----FIKVPQNQNG-KSKGYAFIEFASFEDAKEALNSC--NKR 546
Cdd:TIGR01648 133 -----CISVDNCRLFVGGIPKNKKREEILEEFSKVTegvvdVIVYHSAADKkKNRGFAFVEYESHRAAAMARRKLmpGRI 207
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     547 EIEGRAIRLELQGPRGSPNARSQPS-KTLFVKGLSEDTTEETLKESFD----GSV-RARIVTDretgsskgFGFVDFNSE 620
Cdd:TIGR01648 208 QLWGHVIAVDWAEPEEEVDEDVMAKvKILYVRNLMTTTTEEIIEKSFSefkpGKVeRVKKIRD--------YAFVHFEDR 279
                         250       260
                  ....*....|....*....|....*..
gi 189306     621 EDAKEAMED---GEIDGNKVTLDWAKP 644
Cdd:TIGR01648 280 EDAVKAMDElngKELEGSEIEVTLAKP 306
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
574-634 7.26e-10

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 55.69  E-value: 7.26e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDG 634
Cdd:cd12347   1 LYVGGLAEEVDEKVLHAAFIpfGDIVDiQIPLDYETEKHRGFAFVEFEEAEDAAAAidnMNESELFG 67
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
566-642 7.81e-10

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 55.98  E-value: 7.81e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   566 ARSQPSKTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMED---GEIDGNKVTL 639
Cdd:cd12671   1 ASDRSLRSVFVGNIPYEATEEQLKDIFSevGPVVSfRLVYDRETGKPKGYGFCEYQDQETALSAMRNlngYELNGRALRV 80

                ...
gi 189306   640 DWA 642
Cdd:cd12671  81 DNA 83
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
399-461 8.95e-10

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 55.49  E-value: 8.95e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12448   5 NLPFSATQDALYEAFSQHGSIVSVRlptdrETGQPKGFGYVDFSTIDSAEAAIDALGGEYIDGRPIRL 72
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
573-632 9.68e-10

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 55.20  E-value: 9.68e-10
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGEI 632
Cdd:cd12395   1 SVFVGNLPFDIEEEELRKHFEdcGDVEAvRIVRDRETGIGKGFGYVLFKDKDSVDLALKLNGS 63
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
574-629 1.03e-09

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 55.43  E-value: 1.03e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESF---DGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd21601   3 LFIGDLDKDVTEEMLRDIFskyKSLVSVKICLDSETKKSLGYGYLNFSDKEDAEKAIEE 61
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
399-459 1.12e-09

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 55.25  E-value: 1.12e-09
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd21608   6 NLSWDTTEDDLRDLFSEFGEVESAKvitdrETGRSRGFGFVTFSTAEAAEAAIDALNGKELDGRSI 71
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
487-561 1.21e-09

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 55.29  E-value: 1.21e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   487 TLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPR 561
Cdd:cd12413   1 TLFVRNLPYDTTDEQLEELFSDVGPVKrcfvVKDKGKDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIKVELAKKK 79
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
574-628 1.28e-09

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 55.09  E-value: 1.28e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12353   2 IFVGDLSPEIETEDLKEAFApfGEISdARVVKDTQTGKSKGYGFVSFVKKEDAENAIQ 59
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
572-644 1.93e-09

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 54.17  E-value: 1.93e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDretgsskgFGFVDFNSEEDAKEAME---DGEIDGNKVTLDWAKP 644
Cdd:cd12251   2 KVLYVRNLMLSTTEEKLRELFSeyGKVeRVKKIKD--------YAFVHFEERDDAVKAMEemnGKELEGSEIEVSLAKP 72
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
383-550 2.10e-09

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 59.65  E-value: 2.10e-09
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     383 GKDSKKERDARTLLAKN-LPYKVTQDELKEVFEDAAEI---RLVS--KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDG 456
Cdd:TIGR01659  97 GSDDNDTNNSGTNLIVNyLPQDMTDRELYALFRTIGPIntcRIMRdyKTGYSFGYAFVDFGSEADSQRAIKNLNGITVRN 176
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     457 RSISLYYTGEKGQnqdyrggknstwSGESKTLVLSNLSYSATEETLQEVFEKATFIkVPQN-----QNGKSKGYAFIEFA 531
Cdd:TIGR01659 177 KRLKVSYARPGGE------------SIKDTNLYVTNLPRTITDDQLDTIFGKYGQI-VQKNilrdkLTGTPRGVAFVRFN 243
                         170
                  ....*....|....*....
gi 189306     532 SFEDAKEALNSCNKREIEG 550
Cdd:TIGR01659 244 KREEAQEAISALNNVIPEG 262
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
573-646 2.43e-09

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 54.33  E-value: 2.43e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNK-VTLDWAKPKG 646
Cdd:cd12649   2 NLIVNYLPQDLTDREFRALFRaiGPVnTCKIVRDKKTGYSYGFGFVDFTSEEDAQRAIKtlNGLQLQNKrLKVAYARPGG 81
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
484-553 2.61e-09

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 54.35  E-value: 2.61e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEKatFIKVPQNQ------NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12566   1 ETGRLFLRNLPYSTKEDDLQKLFSK--FGEVSEVHvpidkkTKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLI 74
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
393-461 2.67e-09

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 54.14  E-value: 2.67e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVS----KD-GKSKGIAYIEFKTEADAEK------TFEEKQGTEIDGRSISL 461
Cdd:cd12415   1 KTVFIRNLSFDTTEEDLKEFFSKFGEVKYARivldKDtGHSKGTAFVQFKTKESADKcieaanDESEDGGLVLDGRKLIV 80
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
399-459 4.03e-09

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 53.27  E-value: 4.03e-09
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEI---RLV--SKDGKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSI 459
Cdd:cd12395   6 NLPFDIEEEELRKHFEDCGDVeavRIVrdRETGIGKGFGYVLFKDKDSVDLAL-KLNGSKLRGRKL 70
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
484-560 4.37e-09

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 53.49  E-value: 4.37e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEKATFIK---VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12392   1 EKNKLFVKGLPFSCTKEELEELFKQHGTVKdvrLVTYRNGKPKGLAYVEYENEADASQAVLKTDGTEIKDHTISVAISNP 80
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
398-460 4.88e-09

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 53.33  E-value: 4.88e-09
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   398 KNLPYKVTQDELKEVFEDAAEI---RLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12565   6 KNLPKYVTEKRLKEHFSKKGEItdvKVMRtKDGKSRRFGFIGFKSEEEAQKAVKYFNKTFIDTSKIS 72
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
488-559 4.89e-09

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 53.64  E-value: 4.89e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   488 LVLSNLSYSATEETLQEVFEK----ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQG 559
Cdd:cd12449   3 LFVGGLSFDTNEQSLEEVFSKygqiSEVVVVKDRETQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIRVDQAG 78
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
488-557 4.93e-09

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 53.38  E-value: 4.93e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   488 LVLSNLSYSATEETLQEVFekATF-----IKVPQN-QNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12347   1 LYVGGLAEEVDEKVLHAAF--IPFgdivdIQIPLDyETEKHRGFAFVEFEEAEDAAAAIDNMNESELFGRTIRVNL 74
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
486-553 5.19e-09

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 53.87  E-value: 5.19e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12237   5 LTLFVGRLSLQTTEEKLKEVFSRYGDIRrlrlVRDIVTGFSKRYAFIEYKEERDALHAYRDAKKLVIDQYEI 76
RRM1_RBM5_like cd12561
RNA recognition motif 1 (RRM1) found in RNA-binding protein 5 (RBM5) and similar proteins; ...
570-639 5.38e-09

RNA recognition motif 1 (RRM1) found in RNA-binding protein 5 (RBM5) and similar proteins; This subgroup corresponds to the RRM1 of RNA-binding protein 5 (RBM5 or LUCA15 or H37), RNA-binding protein 10 (RBM10 or S1-1) and similar proteins. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor; it specifically binds poly(G) RNA. RBM10, a paralog of RBM5, may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. Both, RBM5 and RBM10, contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409977 [Multi-domain]  Cd Length: 81  Bit Score: 53.52  E-value: 5.38e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   570 PSKTLFVKGLSEDTTEETLKESFDgSVR-----ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE----IDGNKVTL 639
Cdd:cd12561   1 PNNTIMLRGLPLSVTEEDIRNALV-SHGvqpkdVRLMRRKTTGASRGFAFVEFMSLEEATRWMEANQgklqLQGYKITL 78
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
486-553 5.54e-09

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 54.63  E-value: 5.54e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQN-GKSKGYAFIEFASFEDAKEALNSCNKR---EIEGRAI 553
Cdd:cd21615  19 KTLFVGRLDYSLTELELQKKFSKfgeIEKIRIVRDKEtGKSRGYAFIVFKSESDAKNAFKEGNGLrglKINDRTC 93
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
394-461 5.61e-09

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 52.97  E-value: 5.61e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12418   2 RVRVSNLHPDVTEEDLRELFGRVGPVKSVKinydRSGRSTGTAYVVFERPEDAEKAIKQFDGVLLDGQPMKV 73
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
574-628 5.62e-09

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 52.99  E-value: 5.62e-09
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESF---DGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12400   3 LFVGNLPYDTTAEDLKEHFkkaGEPPSVRLLTDKKTGKSKGCAFVEFDNQKALQKALK 60
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
574-643 6.12e-09

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 53.22  E-value: 6.12e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   574 LFVKGLSEDTTEETLKESFDGS---VRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG---EIDGNKVTLDWAK 643
Cdd:cd12397   1 LFVGNLSFETTEEDLRKHFAPAgkiRKVRMATFEDSGKCKGFAFVDFKEIESATNAVKGPinhSLNGRDLRVEYGE 76
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
394-460 6.35e-09

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 52.98  E-value: 6.35e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIR--LVSKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12413   1 TLFVRNLPYDTTDEQLEELFSDVGPVKrcFVVKDkgkDKCRGFGYVTFALAEDAQRALEEVKGKKFGGRKIK 72
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
395-459 6.57e-09

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 53.04  E-value: 6.57e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLV--SKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12311   1 LKVDNLTYRTTPDDLRRVFEKYGEVGDVyiPRDrytRESRGFAFVRFYDKRDAEDAIDAMDGAELDGREL 70
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
394-461 7.23e-09

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 53.00  E-value: 7.23e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLV--------SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12318   2 TLFVKNLNFKTTEEALKKHFEKCGPIRSVtiakkkdpKGPLLSMGYGFVEFKSPEAAQKALKQLQGTVLDGHALEL 77
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
574-638 8.99e-09

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 52.66  E-value: 8.99e-09
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   574 LFVKGLSEDTTEETLKESFD-----GSVRarIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVT 638
Cdd:cd12311   1 LKVDNLTYRTTPDDLRRVFEkygevGDVY--IPRDRYTRESRGFAFVRFYDKRDAEDAIDamDGaELDGRELR 71
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
570-645 1.24e-08

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 52.69  E-value: 1.24e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   570 PSKTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDWAK 643
Cdd:cd12642   3 PNTCLGVFGLSLYTTERDLREVFSryGPLAGvNVVYDQRTGRSRGFAFVYFERIDDSKEAMEraNGmELDGRRIRVDYSI 82

                ..
gi 189306   644 PK 645
Cdd:cd12642  83 TK 84
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
574-627 1.30e-08

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 52.02  E-value: 1.30e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12321   2 LIVLGLPWKTTEQDLKEYFStfGEVlMVQVKKDPKTGRSKGFGFVRFASYETQVKVL 58
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
574-636 1.52e-08

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 51.89  E-value: 1.52e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDrETGSSKGFGFVDFNSEEDAKEAMED--GEIDGNK 636
Cdd:cd12381   4 LYVKNLDDTIDDEKLREEFSpfGTItSAKVMTD-EGGRSKGFGFVCFSSPEEATKAVTEmnGRIIGGK 70
RRM1_MSSP cd12243
RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) ...
574-628 1.54e-08

RNA recognition motif 1 (RRM1) found in the c-myc gene single-strand binding proteins (MSSP) family; This subfamily corresponds to the RRM1 of c-myc gene single-strand binding proteins (MSSP) family, including single-stranded DNA-binding protein MSSP-1 (also termed RBMS1 or SCR2) and MSSP-2 (also termed RBMS2 or SCR3). All MSSP family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity. Both, MSSP-1 and -2, have been identified as protein factors binding to a putative DNA replication origin/transcriptional enhancer sequence present upstream from the human c-myc gene in both single- and double-stranded forms. Thus, they have been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with c-MYC, the product of protooncogene c-myc. Moreover, the family includes a new member termed RNA-binding motif, single-stranded-interacting protein 3 (RBMS3), which is not a transcriptional regulator. RBMS3 binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. In addition, a putative meiosis-specific RNA-binding protein termed sporulation-specific protein 5 (SPO5, or meiotic RNA-binding protein 1, or meiotically up-regulated gene 12 protein), encoded by Schizosaccharomyces pombe Spo5/Mug12 gene, is also included in this family. SPO5 is a novel meiosis I regulator that may function in the vicinity of the Mei2 dot.


Pssm-ID: 409689 [Multi-domain]  Cd Length: 71  Bit Score: 51.93  E-value: 1.54e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKE---SFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12243   3 VYIRGLPPNTTDEDLLLlcqSFGKIISTKAIIDKQTNKCKGYGFVDFDSPEAALKAIE 60
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
338-637 1.56e-08

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 57.26  E-value: 1.56e-08
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     338 VVDVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLEKPKgKDSKKERDArTLLAKNLPYKVTQDELKEVFEDA 416
Cdd:TIGR01661  36 VRDKVTGQSLGYGFVNYVRPEDAEKAVNsLNGLRLQNKTIKVSYAR-PSSDSIKGA-NLYVSGLPKTMTQHELESIFSPF 113
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     417 AEI---RLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRS--ISLYYTGEKGQNQDyRGGKNSTWSGESKTLV 489
Cdd:TIGR01661 114 GQIitsRILSDNvtGLSKGVGFIRFDKRDEADRAIKTLNGTTPSGCTepITVKFANNPSSSNS-KGLLSQLEAVQNPQTT 192
                         170       180       190       200       210       220       230       240
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     490 LSNLSYSATEETLQEVFEKATFIKVpqnQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPRGSpnARSQ 569
Cdd:TIGR01661 193 RVPLSTILTAAGIGPMHHAAARFRP---SAGDFTAVLAHQQQQHAVAQQHAAQRASPPATDGQTAGLAAGAQIS--ASDG 267
                         250       260       270       280       290       300       310
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306     570 PSKTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNKV 637
Cdd:TIGR01661 268 AGYCIFVYNLSPDTDETVLWQLFGpfGAVQNvKIIRDLTTNQCKGYGFVSMTNYDEAAMAILslNGYTLGNRV 340
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
488-556 1.68e-08

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 51.84  E-value: 1.68e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFEKA---TFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLE 556
Cdd:cd12400   3 LFVGNLPYDTTAEDLKEHFKKAgepPSVRLLTDKkTGKSKGCAFVEFDNQKALQKAL-KLHHTSLGGRKINVE 74
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
486-562 1.86e-08

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 51.84  E-value: 1.86e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIKVPQNQN-GKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPRG 562
Cdd:cd12406   1 KTLFVKGLSEDTTEETLKEAFEGAISARIATDRDtGSSKGFGFVDFSSEEDAKAAKEAMEDGEIDGNKVTLDFAKPKG 78
RRM_snRNP35 cd12237
RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein ...
394-459 1.86e-08

RNA recognition motif (RRM) found in U11/U12 small nuclear ribonucleoprotein 35 kDa protein (U11/U12-35K) and similar proteins; This subfamily corresponds to the RRM of U11/U12-35K, also termed protein HM-1, or U1 snRNP-binding protein homolog, and is one of the components of the U11/U12 snRNP, which is a subunit of the minor (U12-dependent) spliceosome required for splicing U12-type nuclear pre-mRNA introns. U11/U12-35K is highly conserved among bilateria and plants, but lacks in some organisms, such as Saccharomyces cerevisiae and Caenorhabditis elegans. Moreover, U11/U12-35K shows significant sequence homology to U1 snRNP-specific 70 kDa protein (U1-70K or snRNP70). It contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region, and Arg-Asp and Arg-Glu dipeptide repeats rich domain, making U11/U12-35K a possible functional analog of U1-70K. It may facilitate 5' splice site recognition in the minor spliceosome and play a role in exon bridging, interacting with components of the major spliceosome bound to the pyrimidine tract of an upstream U2-type intron. The family corresponds to the RRM of U11/U12-35K that may directly contact the U11 or U12 snRNA through the RRM domain.


Pssm-ID: 409683 [Multi-domain]  Cd Length: 94  Bit Score: 52.33  E-value: 1.86e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   394 TLLAKNLPYKVTQDELKEVFE---DAAEIRLVsKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12237   6 TLFVGRLSLQTTEEKLKEVFSrygDIRRLRLV-RDivtGFSKRYAFIEYKEERDALHAYRDAKKLVIDQYEI 76
RRM2_SRSF1_4_like cd12339
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and ...
488-556 1.93e-08

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and similar proteins; This subfamily corresponds to the RRM2 of several serine/arginine (SR) proteins that have been classified into two subgroups. The first subgroup consists of serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS) and serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). The second subgroup is composed of serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C) and plant pre-mRNA-splicing factor SF2 (SR1). These SR proteins are mainly involved in regulating constitutive and alternative pre-mRNA splicing. They also have been implicated in transcription, genomic stability, mRNA export and translation. All SR proteins in this family, except SRSF5, undergo nucleocytoplasmic shuttling, suggesting their widespread roles in gene expression. These SR proteins share a common domain architecture comprising two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. Both domains can directly contact with RNA. The RRMs appear to determine the binding specificity and the SR domain also mediates protein-protein interactions. In addition, this subfamily includes the yeast nucleolar protein 3 (Npl3p), also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. It is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein with two RRMs, separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409776 [Multi-domain]  Cd Length: 70  Bit Score: 51.44  E-value: 1.93e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   488 LVLSNLSYSATEETLQEVFEKA---TFIKVpqnqNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12339   3 VVVSNLPERASWQDLKDFMRKAgevTYADV----HRDREGEGVVEFTSEEDMKRAIEKLDGTEFNGRRIRVE 70
RRM2_hnRNPA_like cd12328
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
574-617 2.46e-08

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM2 of hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409766 [Multi-domain]  Cd Length: 73  Bit Score: 51.12  E-value: 2.46e-08
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDF 617
Cdd:cd12328   2 LFVGGLKEDVEEEDLREYFSqfGKVeSVEIVTDKETGKKRGFAFVTF 48
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
573-637 2.73e-08

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 51.25  E-value: 2.73e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   573 TLFVKGLSEDTTEETLKESF--DGSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMedgEIDGNKV 637
Cdd:cd12272   1 TVYIGNLAWDIDEDDLRELFaeCCEITNvRLHTDKETGEFKGYGHVEFADEESLDAAL---KLAGTKL 65
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
487-546 3.28e-08

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 50.97  E-value: 3.28e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   487 TLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQN-GKSKGYAFIEFASFEDAKEALNSCNKR 546
Cdd:cd12408   1 TIRVTNLSEDATEEDLRELFRPFgpiSRVYLAKDKEtGQSKGFAFVTFETREDAERAIEKLNGF 64
RRM_SNP1_like cd21615
RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ...
393-459 3.50e-08

RNA recognition motif (RRM) found in Saccharomyces cerevisiae U1 small nuclear ribonucleoprotein SNP1 and similar proteins; SNP1, also called U1 snRNP protein SNP1, or U1 small nuclear ribonucleoprotein 70 kDa homolog, or U1 70K, or U1 snRNP 70 kDa homolog, interacts with mRNA and is involved in nuclear mRNA splicing. It is a component of the spliceosome, where it is associated with snRNP U1 by binding stem loop I of U1 snRNA. Members in this family contain an N-terminal U1snRNP70 domain and an RNA recognition motif (RRM), also called RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410194 [Multi-domain]  Cd Length: 118  Bit Score: 52.31  E-value: 3.50e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEI---RLV--SKDGKSKGIAYIEFKTEADAEKTFEE---KQGTEIDGRSI 459
Cdd:cd21615  19 KTLFVGRLDYSLTELELQKKFSKFGEIekiRIVrdKETGKSRGYAFIVFKSESDAKNAFKEgngLRGLKINDRTC 93
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
487-555 3.92e-08

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 50.64  E-value: 3.92e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   487 TLVLSNLSYSATEETLQEVFE----KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRL 555
Cdd:cd12254   1 VVRLRGLPFSATEEDIRDFFSgldiPPDGIHIVYDDDGRPTGEAYVEFASEEDAQRAL-RRHKGKMGGRYIEV 72
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
399-459 4.52e-08

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 50.68  E-value: 4.52e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAE---IRLV--SKDGKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSI 459
Cdd:cd12400   7 NLPYDTTAEDLKEHFKKAGEppsVRLLtdKKTGKSKGCAFVEFDNQKALQKAL-KLHHTSLGGRKI 71
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
574-637 4.76e-08

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 50.64  E-value: 4.76e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRARIVTDRETGSSKGFGFVDFNSEEDAK---EAMEDGEIDGNKV 637
Cdd:cd12380   4 VYVKNFGEDVDDDELKELFEkyGKITSAKVMKDDSGKSKGFGFVNFENHEAAQkavEELNGKELNGKKL 72
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
574-646 5.07e-08

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 50.69  E-value: 5.07e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESF--DGSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG---EIDGNKVTLDWAKPKG 646
Cdd:cd12324   9 IFVTGVHEEAQEEDIHDKFaeFGEIKnLHLNLDRRTGFVKGYALVEYETKKEAQAAIEGLngkELLGQTISVDWAFVKG 87
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
399-461 5.09e-08

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 50.70  E-value: 5.09e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS--KD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12284   5 SLHFNITEDMLRGIFEPFGKIEFVQlqKDpetGRSKGYGFIQFRDAEDAKKALEQLNGFELAGRPMKV 72
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
488-555 5.20e-08

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 50.42  E-value: 5.20e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   488 LVLSNLSYSATEETLQEVFEKatFIKVPQ------NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12316   2 LFVRNLPFTATEDELRELFEA--FGKISEvhipldKQTKRSKGFAFVLFVIPEDAVKAYQELDGSIFQGRLLHV 73
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
486-557 5.31e-08

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 50.69  E-value: 5.31e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKA------TFIKVPQNQN-GKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12318   1 TTLFVKNLNFKTTEEALKKHFEKCgpirsvTIAKKKDPKGpLLSMGYGFVEFKSPEAAQKALKQLQGTVLDGHALELKI 79
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
393-462 5.38e-08

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 50.34  E-value: 5.38e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSK---GIAYIEFKTEADAEKTFeEKQGTEIDGRSISLY 462
Cdd:cd12298   1 REIRVRNLDFELDEEALRGIFEKFGEIESInipkkQKNRKGRhnnGFAFVTFEDADSAESAL-QLNGTLLDNRKISVS 77
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
393-454 5.43e-08

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 50.25  E-value: 5.43e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAA---EIRLVSKdgksKGIAYIEFKTEADAEKTFEEKQGTEI 454
Cdd:cd12247   3 KILFLQNLPEETTKEMLEMLFNQFPgfkEVRLVPR----RGIAFVEFETEEQATVALQALQGFKI 63
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
389-459 5.80e-08

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 50.59  E-value: 5.80e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   389 ERDARTLLAKNLPYKVTQDELKEVFEDAAEI---RLV--SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12671   3 DRSLRSVFVGNIPYEATEEQLKDIFSEVGPVvsfRLVydRETGKPKGYGFCEYQDQETALSAMRNLNGYELNGRAL 78
RRM3_CELF1-6 cd12362
RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, ...
574-626 5.92e-08

RNA recognition motif 3 (RRM3) found in CELF/Bruno-like family of RNA binding proteins CELF1, CELF2, CELF3, CELF4, CELF5, CELF6 and similar proteins; This subgroup corresponds to the RRM3 of the CUGBP1 and ETR-3-like factors (CELF) or BRUNOL (Bruno-like) proteins, a family of structurally related RNA-binding proteins involved in the regulation of pre-mRNA splicing in the nucleus and in the control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also termed BRUNOL-2, or CUG-BP1, or NAPOR, or EDEN-BP), CELF-2 (also termed BRUNOL-3, or ETR-3, or CUG-BP2, or NAPOR-2), CELF-3 (also termed BRUNOL-1, or TNRC4, or ETR-1, or CAGH4, or ER DA4), CELF-4 (also termed BRUNOL-4), CELF-5 (also termed BRUNOL-5), CELF-6 (also termed BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts.


Pssm-ID: 409797 [Multi-domain]  Cd Length: 73  Bit Score: 50.31  E-value: 5.92e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   574 LFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEA 626
Cdd:cd12362   1 LFVYHLPNEFTDQDLYqlfAPFGNVVSAKVFVDKNTGRSKGFGFVSYDNPLSAQAA 56
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
309-390 5.99e-08

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 50.48  E-value: 5.99e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   309 LFVGNLNFNKSAPELKTGISDVFAkndlaVVDVRIGMTRK------FGYVDFESAEDLEKALELTGLKVFGNEIKLekpk 382
Cdd:cd12450   2 LFVGNLSWSATQDDLENFFSDCGE-----VVDVRIAMDRDdgrskgFGHVEFASAESAQKALEKSGQDLGGREIRL---- 72

                ....*...
gi 189306   383 gkDSKKER 390
Cdd:cd12450  73 --DLANER 78
RRM3_RBM19_RRM2_MRD1 cd12316
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
574-634 6.02e-08

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 2 found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM3 of RBM19 and RRM2 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409755 [Multi-domain]  Cd Length: 74  Bit Score: 50.03  E-value: 6.02e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMEdgEIDG 634
Cdd:cd12316   2 LFVRNLPFTATEDELRELFEafGKISEvHIPLDKQTKRSKGFAFVLFVIPEDAVKAYQ--ELDG 63
RRM_PIN4_like cd12253
RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding ...
487-556 6.43e-08

RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding post-transcriptional regulators cip1, cip2 and similar proteins; This subfamily corresponds to the RRM in PIN4, also termed psi inducibility protein 4 or modifier of damage tolerance Mdt1, a novel phosphothreonine (pThr)-containing protein that specifically interacts with the pThr-binding site of the Rad53 FHA1 domain. It is encoded by gene MDT1 (YBL051C) from yeast Saccharomyces cerevisiae. PIN4 is involved in normal G2/M cell cycle progression in the absence of DNA damage and functions as a novel target of checkpoint-dependent cell cycle arrest pathways. It contains an N-terminal RRM, a nuclear localization signal, a coiled coil, and a total of 15 SQ/TQ motifs. cip1 (Csx1-interacting protein 1) and cip2 (Csx1-interacting protein 2) are novel cytoplasmic RRM-containing proteins that counteract Csx1 function during oxidative stress. They are not essential for viability in fission yeast Schizosaccharomyces pombe. Both cip1 and cip2 contain one RRM. Like PIN4, Cip2 also possesses an R3H motif that may function in sequence-specific binding to single-stranded nucleic acids.


Pssm-ID: 240699 [Multi-domain]  Cd Length: 79  Bit Score: 50.14  E-value: 6.43e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   487 TLVLSNLSYSATEETLQEVFEKatfIKVPQNQ-------NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12253   3 AIVIKNIPFSLRKEQLLDIIED---LGIPLPYafnyhfdNGVFRGLAFANFRSPEEAQTVVEALNGYEISGRRLRVE 76
RRM_SRSF2_SRSF8 cd12311
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and ...
492-554 6.49e-08

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF2, SRSF8 and similar proteins; This subfamily corresponds to the RRM of SRSF2 and SRSF8. SRSF2, also termed protein PR264, or splicing component, 35 kDa (splicing factor SC35 or SC-35), is a prototypical SR protein that plays important roles in the alternative splicing of pre-mRNA. It is also involved in transcription elongation by directly or indirectly mediating the recruitment of elongation factors to the C-terminal domain of polymerase II. SRSF2 is exclusively localized in the nucleus and is restricted to nuclear processes. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides. The RRM is responsible for the specific recognition of 5'-SSNG-3' (S=C/G) RNA. In the regulation of alternative splicing events, it specifically binds to cis-regulatory elements on the pre-mRNA. The RS domain modulates SRSF2 activity through phosphorylation, directly contacts RNA, and promotes protein-protein interactions with the spliceosome. SRSF8, also termed SRP46 or SFRS2B, is a novel mammalian SR splicing factor encoded by a PR264/SC35 functional retropseudogene. SRSF8 is localized in the nucleus and does not display the same activity as PR264/SC35. It functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. Like SRSF2, SRSF8 contains a single N-terminal RRM and a C-terminal RS domain.


Pssm-ID: 409751 [Multi-domain]  Cd Length: 73  Bit Score: 49.96  E-value: 6.49e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFEKatF-----IKVPQNQNGK-SKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12311   5 NLTYRTTPDDLRRVFEK--YgevgdVYIPRDRYTReSRGFAFVRFYDKRDAEDAIDAMDGAELDGRELR 71
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
399-459 7.25e-08

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 50.21  E-value: 7.25e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEI---RLV--SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12398   7 NIPYDATEEQLKEIFSEVGPVvsfRLVtdRETGKPKGYGFCEFRDAETALSAVRNLNGYELNGRPL 72
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
492-557 7.30e-08

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 49.88  E-value: 7.30e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   492 NLSYSATEETLQEVFEKATFIK-VPQNQNGKSK---GYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12240   5 NLSFYTTEEQIYELFSKCGDIKrIIMGLDKFKKtpcGFCFVEYYSREDAENAVKYLNGTKLDDRIIRVDW 74
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
486-556 7.43e-08

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 49.99  E-value: 7.43e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12336   2 RTLFVGNLDPRVTEEILYELFLQAgplEGVKIPKDPNGKPKNFAFVTFKHEVSVPYAIQLLNGIRLFGREIRIK 75
RRM_PPIL4 cd12235
RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and ...
570-640 8.15e-08

RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins; This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus.


Pssm-ID: 409681 [Multi-domain]  Cd Length: 83  Bit Score: 49.96  E-value: 8.15e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   570 PSKTLFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLD 640
Cdd:cd12235   2 PENVLFVCKLNPVTTDEDLEiifSRFGKIKSCEVIRDKKTGDSLQYAFIEFETKESCEEAyfkMDNVLIDDRRIHVD 78
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
574-628 8.55e-08

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 49.93  E-value: 8.55e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12284   1 LYVGSLHFNITEDMLRGIFEpfGKIeFVQLQKDPETGRSKGYGFIQFRDAEDAKKALE 58
RRM_RBM42 cd12383
RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This ...
574-636 9.03e-08

RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409817 [Multi-domain]  Cd Length: 83  Bit Score: 49.97  E-value: 9.03e-08
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD---GSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNK 636
Cdd:cd12383   9 IFCGDLGNEVTDEVLARAFSkypSFQKAKVIRDKRTGKSKGYGFVSFKDPNDYLKALRemNGKYVGNR 76
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
486-560 9.31e-08

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 49.55  E-value: 9.31e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKatFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12251   2 KVLYVRNLMLSTTEEKLRELFSE--YGKVERVK--KIKDYAFVHFEERDDAVKAMEEMNGKELEGSEIEVSLAKP 72
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
394-444 9.38e-08

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 49.54  E-value: 9.38e-08
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEK 444
Cdd:cd12283   1 TVFVMQLSLKARERDLYEFFSKAGKVRDVRlimdrNSRRSKGVAYVEFYDVESVPL 56
RRM1_RBM10 cd12753
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 10 (RBM10); This ...
571-645 9.55e-08

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 10 (RBM10); This subgroup corresponds to the RRM1 of RBM10, also termed G patch domain-containing protein 9, or RNA-binding protein S1-1 (S1-1), a paralog of putative tumor suppressor RNA-binding protein 5 (RBM5 or LUCA15 or H37). It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. RBM10 is structurally related to RBM5 and RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 410147 [Multi-domain]  Cd Length: 84  Bit Score: 49.94  E-value: 9.55e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   571 SKTLFVKGLSEDTTEETLKE---SFDGSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE----IDGNKVTLDWA 642
Cdd:cd12753   1 SNIIMLRMLPQSATENDIRGqlqAHGVQPReVRLMRNKSSGQSRGFAFVEFNHLQDATRWMEANQhsltILGQKVSMHYS 80

                ...
gi 189306   643 KPK 645
Cdd:cd12753  81 DPK 83
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
309-379 9.91e-08

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 49.59  E-value: 9.91e-08
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   309 LFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRI-----GMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLE 379
Cdd:cd00590   1 LFVGNLPPDTTEEDLR----ELFSKFG-EVVSVRIvrdrdGKSKGFAFVEFESPEDAEKALEaLNGTELGGRPLKVS 72
RRM3_Prp24 cd12298
RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
491-557 1.13e-07

RNA recognition motif 3 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM3 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409739 [Multi-domain]  Cd Length: 78  Bit Score: 49.57  E-value: 1.13e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   491 SNLSYSATEETLQEVFEK---ATFIKVPQNQ----NGKSKGYAFIEFASFEDAKEALNsCNKREIEGRAIRLEL 557
Cdd:cd12298   6 RNLDFELDEEALRGIFEKfgeIESINIPKKQknrkGRHNNGFAFVTFEDADSAESALQ-LNGTLLDNRKISVSL 78
RRM_snRNP70 cd12236
RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and ...
393-459 1.14e-07

RNA recognition motif (RRM) found in U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and similar proteins; This subfamily corresponds to the RRM of U1-70K, also termed snRNP70, a key component of the U1 snRNP complex, which is one of the key factors facilitating the splicing of pre-mRNA via interaction at the 5' splice site, and is involved in regulation of polyadenylation of some viral and cellular genes, enhancing or inhibiting efficient poly(A) site usage. U1-70K plays an essential role in targeting the U1 snRNP to the 5' splice site through protein-protein interactions with regulatory RNA-binding splicing factors, such as the RS protein ASF/SF2. Moreover, U1-70K protein can specifically bind to stem-loop I of the U1 small nuclear RNA (U1 snRNA) contained in the U1 snRNP complex. It also mediates the binding of U1C, another U1-specific protein, to the U1 snRNP complex. U1-70K contains a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by an adjacent glycine-rich region at the N-terminal half, and two serine/arginine-rich (SR) domains at the C-terminal half. The RRM is responsible for the binding of stem-loop I of U1 snRNA molecule. Additionally, the most prominent immunodominant region that can be recognized by auto-antibodies from autoimmune patients may be located within the RRM. The SR domains are involved in protein-protein interaction with SR proteins that mediate 5' splice site recognition. For instance, the first SR domain is necessary and sufficient for ASF/SF2 Binding. The family also includes Drosophila U1-70K that is an essential splicing factor required for viability in flies, but its SR domain is dispensable. The yeast U1-70k doesn't contain easily recognizable SR domains and shows low sequence similarity in the RRM region with other U1-70k proteins and therefore not included in this family. The RRM domain is dispensable for yeast U1-70K function.


Pssm-ID: 409682 [Multi-domain]  Cd Length: 91  Bit Score: 49.93  E-value: 1.14e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEI---RLV--SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12236   2 KTLFVARLSYDTTESKLRREFEKYGPIkrvRLVrdKKTGKSRGYAFIEFEHERDMKAAYKHADGKKIDGRRV 73
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
309-379 1.31e-07

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 49.33  E-value: 1.31e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   309 LFVGNLNFNKSapelKTGISDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALELT-GLKVFGNEIKLE 379
Cdd:cd12448   1 LFVGNLPFSAT----QDALYEAFSQHG-SIVSVRLptdretGQPKGFGYVDFSTIDSAEAAIDALgGEYIDGRPIRLD 73
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
488-562 1.43e-07

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 49.34  E-value: 1.43e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIKVPQ----NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPRG 562
Cdd:cd21609   2 LYVGNIPRNVTSEELAKIFEEAGTVEIAEvmydRYTGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKVNITEKPL 80
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
393-464 1.61e-07

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 49.20  E-value: 1.61e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12524   2 RTLFVRNINSSVEDEELRALFEQFGEIRTLYTACKHRGFIMVSYYDIRAAQSAKRALQGTELGGRKLDIHFS 73
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
486-550 1.65e-07

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 49.14  E-value: 1.65e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEG 550
Cdd:cd12415   1 KTVFIRNLSFDTTEEDLKEFFSKFGEVKyariVLDKDTGHSKGTAFVQFKTKESADKCIEAANDESEDG 69
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
488-556 1.65e-07

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 48.98  E-value: 1.65e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIKVPQ----NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12397   1 LFVGNLSFETTEEDLRKHFAPAGKIRKVRmatfEDSGKCKGFAFVDFKEIESATNAVKGPINHSLNGRDLRVE 73
RRM_hnRNPH_ESRPs_RBM12_like cd12254
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein ...
398-462 1.93e-07

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, epithelial splicing regulatory proteins (ESRPs), Drosophila RNA-binding protein Fusilli, RNA-binding protein 12 (RBM12) and similar proteins; The family includes RRM domains in the hnRNP H protein family, G-rich sequence factor 1 (GRSF-1), ESRPs (also termed RBM35), Drosophila Fusilli, RBM12 (also termed SWAN), RBM12B, RBM19 (also termed RBD-1) and similar proteins. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. GRSF-1 is a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. ESRP1 (also termed RBM35A) and ESRP2 (also termed RBM35B) are epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of fibroblast growth factor receptor 2 (FGFR2), ENAH (also termed hMena), CD44 and CTNND1 (also termed p120-Catenin) transcripts. Fusilli shows high sequence homology to ESRPs. It can regulate endogenous FGFR2 splicing and functions as a splicing factor. The biological roles of both, RBM12 and RBM12B, remain unclear. RBM19 is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. Members in this family contain 2~6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409699 [Multi-domain]  Cd Length: 73  Bit Score: 48.71  E-value: 1.93e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   398 KNLPYKVTQDELKEVFED----AAEIRLV-SKDGKSKGIAYIEFKTEADAEKTFEEKQGTeIDGRSISLY 462
Cdd:cd12254   5 RGLPFSATEEDIRDFFSGldipPDGIHIVyDDDGRPTGEAYVEFASEEDAQRALRRHKGK-MGGRYIEVF 73
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
574-634 2.30e-07

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 48.67  E-value: 2.30e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMedGEIDG 634
Cdd:cd12399   1 LYVGNLPYSASEEQLKSLFGqfGAVFDvKLPMDRETKRPRGFGFVELQEEESAEKAI--AKLDG 62
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
485-554 2.37e-07

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 49.16  E-value: 2.37e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   485 SKTLVLSNL--SYSATEEtLQEVFEKA---TFIKVPQNqNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12390   2 SKCLFVDRLpkDFRDGSE-LRKLFSQVgkpTFCQLAMG-NGVPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIR 74
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
573-627 2.73e-07

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 48.38  E-value: 2.73e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12283   1 TVFVMQLSLKARERDLYEFFSkaGKVRdVRLIMDRNSRRSKGVAYVEFYDVESVPLAL 58
RRM2_NGR1_NAM8_like cd12613
RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast ...
573-627 2.94e-07

RNA recognition motif 2 (RRM2) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM2 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410025 [Multi-domain]  Cd Length: 80  Bit Score: 48.28  E-value: 2.94e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFDG---SVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12613   3 SIFVGDLSPTTNESDLVSLFQSrfpSCKsAKIMTDPVTGVSRGYGFVRFSDENDQQRAL 61
RRM1_RRT5 cd12409
RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) ...
490-560 3.24e-07

RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins; This subfamily corresponds to the RRM1 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409843 [Multi-domain]  Cd Length: 84  Bit Score: 48.43  E-value: 3.24e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   490 LSNLSYSATEETLQE---------VFEKATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12409   4 ISNLSYSTTEEELEEllkdykpvsVLIPSYTVRGFRSRKHRPLGIAYAEFSSVEEAEKVVKDLNGKVFKGRKLFVKLHVP 83
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
399-463 3.34e-07

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 48.21  E-value: 3.34e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12397   5 NLSFETTEEDLRKHFAPAGKIRKVrmatfEDSGKCKGFAFVDFKEIESATNAVKGPINHSLNGRDLRVEY 74
RRM_TRA2 cd12363
RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and ...
404-459 3.43e-07

RNA recognition motif (RRM) found in transformer-2 protein homolog TRA2-alpha, TRA2-beta and similar proteins; This subfamily corresponds to the RRM of two mammalian homologs of Drosophila transformer-2 (Tra2), TRA2-alpha, TRA2-beta (also termed SFRS10), and similar proteins found in eukaryotes. TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Both, TRA2-alpha and TRA2-beta, contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 409798 [Multi-domain]  Cd Length: 80  Bit Score: 48.38  E-value: 3.43e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   404 VTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12363  13 TTERDLREVFSRYGPIEKVQvvydqQTGRSRGFGFVYFESVEDAKEAKERLNGQEIDGRRI 73
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
493-556 3.50e-07

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 48.46  E-value: 3.50e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   493 LSYSATEETLQEVFEK----ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12641  15 LSLYTTERDLREVFSKygpiADVSIVYDQQSRRSRGFAFVYFENVDDAKEAKERANGMELDGRRIRVD 82
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
566-645 3.90e-07

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 48.46  E-value: 3.90e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   566 ARSQPSKTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG---EIDGNKVTL 639
Cdd:cd12641   2 ANPDPNCCLGVFGLSLYTTERDLREVFSkyGPIAdVSIVYDQQSRRSRGFAFVYFENVDDAKEAKERAngmELDGRRIRV 81

                ....*.
gi 189306   640 DWAKPK 645
Cdd:cd12641  82 DFSITK 87
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
395-459 3.90e-07

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 48.18  E-value: 3.90e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   395 LLAKNLPYKVTQDELKEVFE---DAAEIRLV--SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12566   5 LFLRNLPYSTKEDDLQKLFSkfgEVSEVHVPidKKTKKSKGFAYVLFLDPEDAVQAYNELDGKVFQGRLI 74
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
310-379 4.09e-07

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 47.88  E-value: 4.09e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   310 FVGNLNFNKSAPELKtgisDVFAKNdLAVVDVRI------GMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLE 379
Cdd:cd12395   3 FVGNLPFDIEEEELR----KHFEDC-GDVEAVRIvrdretGIGKGFGYVLFKDKDSVDLALKLNGSKLRGRKLRVK 73
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
393-463 4.36e-07

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 48.03  E-value: 4.36e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAA-----EIRLVsKD---GKSKGIAYIEFKTEADAEKTFEEKQGT----EIDGRSIS 460
Cdd:cd12313   3 NVLILRGLDVLTTEEDILSALQAHAdlpikDVRLI-RDkltGTSRGFAFVEFSSLEDATQVMDALQNLlppfKIDGRVVS 81

                ...
gi 189306   461 LYY 463
Cdd:cd12313  82 VSY 84
RRM smart00360
RNA recognition motif;
308-378 4.56e-07

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 47.59  E-value: 4.56e-07
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306      308 NLFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKL 378
Cdd:smart00360   1 TLFVGNLPPDTTEEELR----ELFSKFG-KVESVRLvrdketGKSKGFAFVEFESEEDAEKALEaLNGKELDGRPLKV 73
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
573-628 4.74e-07

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 47.61  E-value: 4.74e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFDGS---VRARIVTDReTGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12391   1 TVFVSNLDYSVPEDKIREIFSGCgeiTDVRLVKNY-KGKSKGYCYVEFKDEESAQKALK 58
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
303-379 4.80e-07

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 47.98  E-value: 4.80e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   303 PTTAFnlfVGNLNFnkSAPElkTGISDVFAknDLAVVDVRI------GMTRKFGYVDFESAEDLEKALELTGLKVFGNEI 376
Cdd:cd12402   2 PYTAY---LGNLPY--DVTE--DDIEDFFR--GLNISSVRLprengpGRLRGFGYVEFEDRESLIQALSLNEESLKNRRI 72

                ...
gi 189306   377 KLE 379
Cdd:cd12402  73 RVD 75
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
499-647 4.91e-07

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 53.08  E-value: 4.91e-07
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     499 EETLQEVFEKATFI---KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIE-GRAIRLelqgprgspnARSQPSKTL 574
Cdd:TIGR01648  72 EDELVPLFEKAGPIyelRLMMDFSGQNRGYAFVTFCGKEEAKEAVKLLNNYEIRpGRLLGV----------CISVDNCRL 141
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     575 FVKGLSEDTTEETLKESF----DGSVRArIVTDRETGSSK--GFGFVDFNSEEDAKEA---MEDGEID--GNKVTLDWAK 643
Cdd:TIGR01648 142 FVGGIPKNKKREEILEEFskvtEGVVDV-IVYHSAADKKKnrGFAFVEYESHRAAAMArrkLMPGRIQlwGHVIAVDWAE 220

                  ....
gi 189306     644 PKGE 647
Cdd:TIGR01648 221 PEEE 224
RRM_SLIRP cd12242
RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and ...
573-639 4.92e-07

RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins; This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities.


Pssm-ID: 409688 [Multi-domain]  Cd Length: 73  Bit Score: 47.73  E-value: 4.92e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAM--EDGEIDGNKVTL 639
Cdd:cd12242   1 KLFVSNLPWTTGSSELKEYFSqfGKVkRCNLPFDKETGFHKGFGFVSFENEDGLRNALqkQKHIFEGNKVSV 72
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
574-646 5.05e-07

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 47.80  E-value: 5.05e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDWAKPKG 646
Cdd:cd21609   2 LYVGNIPRNVTSEELAKIFEeaGTVeIAEVMYDRYTGRSRGFGFVTMGSVEDAKAAIEklNGtEVGGREIKVNITEKPL 80
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
568-636 5.30e-07

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 47.67  E-value: 5.30e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   568 SQPSKTLFVKGLSEDTTEETLKESF-DGSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME-DGEIDGNK 636
Cdd:cd12401   2 TEPPFTAYVGNLPFNTVQGDLDAIFkDLKVRSvRLVRDRETDKFKGFCYVEFEDLESLKEALEyDGALFEDR 73
RRM3_hnRNPR_like cd12251
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
393-461 5.32e-07

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM3 in hnRNP R, hnRNP Q, and APOBEC-1 complementation factor (ACF). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches and has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members contain three conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409697 [Multi-domain]  Cd Length: 72  Bit Score: 47.63  E-value: 5.32e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEirlVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12251   2 KVLYVRNLMLSTTEEKLRELFSEYGK---VERVKKIKDYAFVHFEERDDAVKAMEEMNGKELEGSEIEV 67
RRM_SF3B14 cd12241
RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar ...
393-463 5.41e-07

RNA recognition motif (RRM) found in pre-mRNA branch site protein p14 (SF3B14) and similar proteins; This subfamily corresponds to the RRM of SF3B14 (also termed p14), a 14 kDa protein subunit of SF3B which is a multiprotein complex that is an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA and has been involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B14 associates directly with another SF3B subunit called SF3B155. It is also present in both U2- and U12-dependent spliceosomes and may contribute to branch site positioning in both the major and minor spliceosome. Moreover, SF3B14 interacts directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. SF3B14 contains one well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409687 [Multi-domain]  Cd Length: 77  Bit Score: 47.62  E-value: 5.41e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVSK--DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRS-ISLYY 463
Cdd:cd12241   3 RILYVRNLPYKISSEELYDLFGKYGAIRQIRIgnTKETRGTAFVVYEDIFDAKNACDHLSGFNVCNRYlVVLYY 76
RRM2_RBM28_like cd12414
RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
574-642 5.49e-07

RNA recognition motif 2 (RRM2) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM2 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409848 [Multi-domain]  Cd Length: 76  Bit Score: 47.55  E-value: 5.49e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDReTGSSKGFGFVDFNSEEDAKEAME---DGEIDGNKVTLDWA 642
Cdd:cd12414   2 LIVRNLPFKCTEDDLKKLFSkfGKVlEVTIPKKP-DGKLRGFAFVQFTNVADAAKAIKgmnGKKIKGRPVAVDWA 75
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
574-628 5.59e-07

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 47.40  E-value: 5.59e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12375   2 LIVNYLPQSMTQEELRSLFGaiGPIEScKLVRDKITGQSLGYGFVNYRDPNDARKAIN 59
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
492-553 5.71e-07

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 47.55  E-value: 5.71e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   492 NLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12380   8 NFGEDVDDDELKELFEKygkITSAKVMKDDSGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKL 72
RRM2_hnRNPA0 cd12579
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
574-647 6.06e-07

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A0, a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409993 [Multi-domain]  Cd Length: 80  Bit Score: 47.52  E-value: 6.06e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEA--MEDGEIDGNKVTLDWAKPKGE 647
Cdd:cd12579   2 LFVGGLKGDVGEGDLVEHFSqfGTVeKVEVIADKDTGKKRGFGFVYFEDHDSADKAavVKFHSINGHRVEVKKAVPKEE 80
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
488-551 6.10e-07

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 47.41  E-value: 6.10e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   488 LVLSNLSYSATEETLQEVFEKATF----IKVPQNQNGKSKGYAFIEFASFEDAKEALNsCNKREIEGR 551
Cdd:cd12514   2 IRITNLPYDATPVDIQRFFEDHGVrpedVHLLRNKKGRGNGEALVTFKSEGDAREVLK-LNGKKLGKR 68
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
493-556 6.69e-07

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 47.68  E-value: 6.69e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   493 LSYSATEETLQEVFEK----ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12642  12 LSLYTTERDLREVFSRygplAGVNVVYDQRTGRSRGFAFVYFERIDDSKEAMERANGMELDGRRIRVD 79
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
492-556 6.80e-07

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 47.11  E-value: 6.80e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLE 556
Cdd:cd12395   6 NLPFDIEEEELRKHFEDCGDVEavriVRDRETGIGKGFGYVLFKDKDSVDLAL-KLNGSKLRGRKLRVK 73
RRM3_RBM47 cd12497
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This ...
486-560 7.81e-07

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409920 [Multi-domain]  Cd Length: 74  Bit Score: 47.27  E-value: 7.81e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12497   2 KILYVRNLMIETTEDTIKKIFGQFNPGCVERVK--KIRDYAFVHFASRDDAVVAMNNLNGTELEGSCIEVTLAKP 74
RRM6_RBM19 cd12571
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
395-461 8.21e-07

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409985 [Multi-domain]  Cd Length: 79  Bit Score: 47.04  E-value: 8.21e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLV------SKDGKSKGIAYIEFKTEADAEKTFEE-KQGTEIDGRSISL 461
Cdd:cd12571   3 ILVRNIPFQATVKEVRELFSTFGELKTVrlpkkmGGTGQHRGFGFVDFITKQDAKRAFDAlCHSTHLYGRRLVL 76
RRM4_RBM12_like cd12514
RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
399-457 8.42e-07

RNA recognition motif 4 (RRM4) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM4 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409936 [Multi-domain]  Cd Length: 73  Bit Score: 47.02  E-value: 8.42e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   399 NLPYKVTQDELKEVFED------AAEIrLVSKDGKSKGIAYIEFKTEADAEKTfEEKQGTEIDGR 457
Cdd:cd12514   6 NLPYDATPVDIQRFFEDhgvrpeDVHL-LRNKKGRGNGEALVTFKSEGDAREV-LKLNGKKLGKR 68
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
574-627 8.45e-07

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 46.83  E-value: 8.45e-07
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESF--DGSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12334   1 VYVGNLDEKVTEELLWELFiqAGPVvNVHMPKDRVTQQHQGYGFVEFLSEEDADYAI 57
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
394-464 8.89e-07

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 46.84  E-value: 8.89e-07
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEI---RLVSK-DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12320   2 KLIVKNVPFEATRKEIRELFSPFGQLksvRLPKKfDGSHRGFAFVEFVTKQEAQNAMEALKSTHLYGRHLVLEYA 76
RRM2_hnRNPD_like cd12329
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
574-637 9.61e-07

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM2 of hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. It has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All memembers in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 240775 [Multi-domain]  Cd Length: 75  Bit Score: 46.98  E-value: 9.61e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFDGS---VRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG--EIDGNKV 637
Cdd:cd12329   2 IFVGGLSPETTEEKIREYFGKFgniVEIELPMDKKTNKRRGFCFITFDSEEPVKKILETQfhVIGGKKV 70
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
399-459 9.64e-07

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 46.90  E-value: 9.64e-07
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   399 NLPYKVTQDELKEVFEDAAE-IR--LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd21605   8 NLPFDCTWEDLKDHFSQVGEvIRadIVTSRGRHRGMGTVEFTNKEDVDRAISKFDHTMFMGREI 71
RRM1_Hrp1p cd12577
RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 ...
574-645 1.02e-06

RNA recognition motif 1 (RRM1) found in yeast nuclear polyadenylated RNA-binding protein 4 (Hrp1p or Nab4p) and similar proteins; This subfamily corresponds to the RRM1 of Hrp1p and similar proteins. Hrp1p or Nab4p, also termed cleavage factor IB (CFIB), is a sequence-specific trans-acting factor that is essential for mRNA 3'-end formation in yeast Saccharomyces cerevisiae. It can be UV cross-linked to RNA and specifically recognizes the (UA)6 RNA element required for both, the cleavage and poly(A) addition, steps. Moreover, Hrp1p can shuttle between the nucleus and the cytoplasm, and play an additional role in the export of mRNAs to the cytoplasm. Hrp1p also interacts with Rna15p and Rna14p, two components of CF1A. In addition, Hrp1p functions as a factor directly involved in modulating the activity of the nonsense-mediated mRNA decay (NMD) pathway. It binds specifically to a downstream sequence element (DSE)-containing RNA and interacts with Upf1p, a component of the surveillance complex, further triggering the NMD pathway. Hrp1p contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an arginine-glycine-rich region harboring repeats of the sequence RGGF/Y.


Pssm-ID: 409991 [Multi-domain]  Cd Length: 76  Bit Score: 46.72  E-value: 1.02e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAM-EDGEIDGNKVTLDWAKPK 645
Cdd:cd12577   1 MFIGGLNWDTTEEGLRDYFSqfGTVvDCTIMKDSATGRSRGFGFLTFEDPSSVNEVMkKEHVLDGKIIDPKRAIPR 76
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
572-637 1.16e-06

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 46.94  E-value: 1.16e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDReTGSSKGFGFVDFNSEEDAKEAM--EDGEIDGNKV 637
Cdd:cd12392   3 NKLFVKGLPFSCTKEELEELFKqhGTVKDvRLVTYR-NGKPKGLAYVEYENEADASQAVlkTDGTEIKDHT 72
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
570-638 1.22e-06

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 46.40  E-value: 1.22e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   570 PSKTLFVKGLSEDTTEETLKE---SFDGSVRARIVtdretgSSKGFGFVDFNSEEDAKEAMEDGeiDGNKVT 638
Cdd:cd12247   1 PNKILFLQNLPEETTKEMLEMlfnQFPGFKEVRLV------PRRGIAFVEFETEEQATVALQAL--QGFKIT 64
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
487-554 1.23e-06

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 46.51  E-value: 1.23e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   487 TLVLSNLSYSATEETLQEVFekATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12354   2 TVYVGNITKGLTEALLQQTF--SPFGQILEVRVFPDKGYAFIRFDSHEAATHAIVSVNGTIINGQAVK 67
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
492-554 1.25e-06

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 46.62  E-value: 1.25e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFEK------ATFIKVPQNqnGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12353   6 DLSPEIETEDLKEAFAPfgeisdARVVKDTQT--GKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNIR 72
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
393-461 1.37e-06

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 46.69  E-value: 1.37e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIR-----LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12674   1 TTLFVRNLPFDVTLESLTDFFSDIGPVKhavvvTDPETKKSRGYGFVSFSTHDDAEEALAKLKNRKLSGHILKL 74
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
573-643 1.43e-06

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 46.53  E-value: 1.43e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   573 TLFVKGLSEDTTEETLKESF----DGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDgeIDGNKV-------TLDW 641
Cdd:cd12344   1 TLWMGDLEPWMDEAYISSCFaktgEEVVSVKIIRNKQTGKSAGYCFVEFATQEAAEQALEH--LNGKPIpntqqrfRLNW 78

                ..
gi 189306   642 AK 643
Cdd:cd12344  79 AS 80
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
570-642 1.46e-06

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 46.44  E-value: 1.46e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   570 PSKTLFVKGLSEDTTEETLKESFDGS--VRARIVTDRETGSSKGFGFVDFNSEEDAKEA--MEDGEIDGNKVTLDWA 642
Cdd:cd12402   1 PPYTAYLGNLPYDVTEDDIEDFFRGLniSSVRLPRENGPGRLRGFGYVEFEDRESLIQAlsLNEESLKNRRIRVDVA 77
RRM2_HRB1_GBP2 cd21606
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, ...
398-457 1.51e-06

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410185 [Multi-domain]  Cd Length: 75  Bit Score: 46.20  E-value: 1.51e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   398 KNLPYKVTQDELKEVFEDA-----AEIRLvSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGR 457
Cdd:cd21606   7 ANLPYSINWQALKDMFKECgdvlrADVEL-DYNGRSRGFGTVIYATEEEMHRAIDTFNGYELEGR 70
RRM2_hnRNPA2B1 cd12581
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP ...
572-621 1.52e-06

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A2/B1, an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409995 [Multi-domain]  Cd Length: 80  Bit Score: 46.51  E-value: 1.52e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEE 621
Cdd:cd12581   1 KKLFVGGIKEDTEEHHLRDYFEeyGKIDTiEIITDRQSGKKRGFGFVTFDDHD 53
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
487-554 1.64e-06

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 46.12  E-value: 1.64e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   487 TLVLSNLSYSATEETLQEVFEK-ATFIKVP---QNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12393   3 TVYVSNLPFSLTNNDLHQIFSKyGKVVKVTilkDKETRKSKGVAFVLFLDRESAHNAVRAMNNKELFGRTLK 74
RRM2_MSI cd12323
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, ...
574-628 1.69e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homologs Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM2.in Musashi-1 (also termed Msi1), a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 240769 [Multi-domain]  Cd Length: 74  Bit Score: 46.27  E-value: 1.69e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12323   2 IFVGGLSANTTEDDVKKYFSqfGKVEdAMLMFDKQTNRHRGFGFVTFESEDVVDKVCE 59
RRM1_U2AF65 cd12230
RNA recognition motif 1 (RRM1) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
309-381 1.73e-06

RNA recognition motif 1 (RRM1) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; The subfamily corresponds to the RRM1 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409677 [Multi-domain]  Cd Length: 82  Bit Score: 46.39  E-value: 1.73e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   309 LFVGNLNFNKSAPELKTGISDVFAKNDLA------VVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLEKP 381
Cdd:cd12230   4 LYVGNIPPGITEEELMDFFNQAMRAAGLTqapgnpVLAVQINPDKNFAFVEFRSVEETTAALALDGIIFKGQPLKIRRP 82
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
486-556 1.75e-06

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 45.97  E-value: 1.75e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12592   2 RTLFVGNLDTKVTEELLFELFLQAgpvIKVKIPKDKDGKPKQFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKIQ 75
RRM_CFIm68_CFIm59 cd12372
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
488-551 1.75e-06

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6), pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7), and similar proteins; This subfamily corresponds to the RRM of cleavage factor Im (CFIm) subunits. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. Structurally related CFIm68 and CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59), are functionally redundant. Both contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. Their N-terminal RRM mediates the interaction with CFIm25, and also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 409807 [Multi-domain]  Cd Length: 76  Bit Score: 46.15  E-value: 1.75e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   488 LVLSNLSYSATEETLQEVFEKATF-----IKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGR 551
Cdd:cd12372   1 LYVGNLQWWTTDEDLEGACASFGVvdvkeIKFFEHKaNGKSKGYAYVEFASPAAAAAVKEKLEKREFNGR 70
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
574-640 1.75e-06

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 46.09  E-value: 1.75e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME---DGEIDGNKVTLD 640
Cdd:cd12417   2 LWISGLSDTTKAADLKKIFSkyGKVVsAKVVTSARTPGSRCYGYVTMASVEEADLCIKslnKTELHGRVITVE 74
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
574-632 1.76e-06

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 46.41  E-value: 1.76e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDReTGSSKGFGFVDFNSEEDAKEAMEDGEI 632
Cdd:cd12673   5 IFVGGIDFKTNENDLRKFFAqyGSVKeVKIVNDR-AGVSKGYGFITFETQEDAQKILQEAEK 65
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
395-460 1.79e-06

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 46.15  E-value: 1.79e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLV----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12564   3 LIVKNLPSSITEDRLRKLFSAFGTITDVqlkyTKDGKFRRFGFVGFKSEEEAQKALKHFNNSFIDTSRIT 72
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
488-551 1.88e-06

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 45.86  E-value: 1.88e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   488 LVLSNLSYSATEETLQEVFEK---ATFIKVPQN-QNGKSKGYAFIEFASFEDAKEALNscNKREIEGR 551
Cdd:cd12321   2 LIVLGLPWKTTEQDLKEYFSTfgeVLMVQVKKDpKTGRSKGFGFVRFASYETQVKVLS--QRHMIDGR 67
RRM3_I_PABPs cd12380
RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This ...
398-459 1.88e-06

RNA recognition motif 3 (RRM3) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM3 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409814 [Multi-domain]  Cd Length: 80  Bit Score: 46.01  E-value: 1.88e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   398 KNLPYKVTQDELKEVFEDAAEIR--LVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12380   7 KNFGEDVDDDELKELFEKYGKITsaKVMKDdsGKSKGFGFVNFENHEAAQKAVEELNGKELNGKKL 72
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
309-377 1.91e-06

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 45.69  E-value: 1.91e-06
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306     309 LFVGNLNFNKSAPELKtgisDVFAK----NDLAVVDVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIK 377
Cdd:pfam00076   1 LFVGNLPPDTTEEDLK----DLFSKfgpiKSIRLVRDETGRSKGFAFVEFEDEEDAEKAIEaLNGKELGGRELK 70
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
571-628 2.05e-06

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 46.13  E-value: 2.05e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   571 SKTLFVKGLSEDTTEETLKESFDGS---VRARIVTDRetGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd21605   1 ENSIFVGNLPFDCTWEDLKDHFSQVgevIRADIVTSR--GRHRGMGTVEFTNKEDVDRAIS 59
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
492-554 2.13e-06

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 46.07  E-value: 2.13e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   492 NLSYSATEETLQEVFEKatFIKVPQ-----NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGR------AIR 554
Cdd:cd12412   9 GIDWDTTEEELREFFSK--FGKVKDvkiikDRAGVSKGYGFVTFETQEDAEKIQKWGANLVFKGKklnvgpAIR 80
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
574-643 2.24e-06

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 45.86  E-value: 2.24e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   574 LFVKGLSEDTTEETLKESFDGS---VRARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDWAK 643
Cdd:cd12382   4 LFIGGLNTETNEKALEAVFGKYgriVEVLLMKDRETNKSRGFAFVTFESPADAKDAardMNGKELDGKAIKVEQAT 79
ELAV_HUD_SF TIGR01661
ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing ...
391-544 2.29e-06

ELAV/HuD family splicing factor; This model describes the ELAV/HuD subfamily of splicing factors found in metazoa. HuD stands for the human paraneoplastic encephalomyelitis antigen D of which there are 4 variants in human. ELAV stnds for the Drosophila Embryonic lethal abnormal visual protein. ELAV-like splicing factors are also known in human as HuB (ELAV-like protein 2), HuC (ELAV-like protein 3, Paraneoplastic cerebellar degeneration-associated antigen) and HuR (ELAV-like protein 1). These genes are most closely related to the sex-lethal subfamily of splicing factors found in Dipteran insects (TIGR01659). These proteins contain 3 RNA-recognition motifs (rrm: pfam00076).


Pssm-ID: 273741 [Multi-domain]  Cd Length: 352  Bit Score: 50.32  E-value: 2.29e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     391 DARTLLAKN-LPYKVTQDELKEVFEDAAEI---RLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:TIGR01661   1 ESKTNLIVNyLPQTMTQEEIRSLFTSIGEIescKLVRDKvtGQSLGYGFVNYVRPEDAEKAVNSLNGLRLQNKTIKVSYA 80
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     465 geKGQNQDYRGGkNSTWSGESKTLVLSNLsysateETLQEVFEKATFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSC 543
Cdd:TIGR01661  81 --RPSSDSIKGA-NLYVSGLPKTMTQHEL------ESIFSPFGQIITSRILSDNvTGLSKGVGFIRFDKRDEADRAIKTL 151

                  .
gi 189306     544 N 544
Cdd:TIGR01661 152 N 152
RRM4_NCL cd12406
RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to ...
393-468 2.34e-06

RNA recognition motif 4 (RRM4) found in vertebrate nucleolin; This subfamily corresponds to the RRM4 of ubiquitously expressed protein nucleolin, also termed protein C23, is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines.


Pssm-ID: 409840 [Multi-domain]  Cd Length: 78  Bit Score: 45.68  E-value: 2.34e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVS--KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTGEKG 468
Cdd:cd12406   1 KTLFVKGLSEDTTEETLKEAFEGAISARIATdrDTGSSKGFGFVDFSSEEDAKAAKEAMEDGEIDGNKVTLDFAKPKG 78
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
488-555 2.42e-06

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 45.59  E-value: 2.42e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   488 LVLSNLSYSATEETLQEVFE---KATFIKVP-QNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12399   1 LYVGNLPYSASEEQLKSLFGqfgAVFDVKLPmDRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTIRV 72
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
488-555 3.04e-06

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 45.41  E-value: 3.04e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   488 LVLSNLSYSATEETLQEVFEK---ATFIKVPQNQN-GKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd21601   3 LFIGDLDKDVTEEMLRDIFSKyksLVSVKICLDSEtKKSLGYGYLNFSDKEDAEKAIEEFNYTPIFGKEVRI 74
RRM5_RBM12_like cd12515
RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
490-555 3.21e-06

RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM5 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409937 [Multi-domain]  Cd Length: 75  Bit Score: 45.29  E-value: 3.21e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   490 LSNLSYSAT-EETLQ-----EVFEKATFIKVpqNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12515   5 MRNLPFKATiEDILDffygyRVIPDSVSIRY--NDDGQPTGDARVAFPSPREARRAVRELNNRPLGGRKVKL 74
RRM4_MRD1 cd12319
RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 ...
573-642 3.43e-06

RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409758 [Multi-domain]  Cd Length: 84  Bit Score: 45.55  E-value: 3.43e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   573 TLFVKGLSEDTTEETLKESF---DGSVRARIVTD---RETGS--SKGFGFVDFNSEEDAK---EAMEDGEIDGNKVTLDW 641
Cdd:cd12319   2 TLFVKNLNFSTTNQHLTDVFkhlDGFVFARVKTKpdpKRPGKtlSMGFGFVGFKTKEQAQaalKAMDGFVLDGHKLEVKF 81

                .
gi 189306   642 A 642
Cdd:cd12319  82 S 82
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
399-464 3.87e-06

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 45.10  E-value: 3.87e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   399 NLPYKVTQDELKEVFEDA--AEIRLVSKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd21609   6 NIPRNVTSEELAKIFEEAgtVEIAEVMYDrytGRSRGFGFVTMGSVEDAKAAIEKLNGTEVGGREIKVNIT 76
RRM2_SECp43 cd12612
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
487-561 4.08e-06

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM2 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410024 [Multi-domain]  Cd Length: 82  Bit Score: 45.44  E-value: 4.08e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   487 TLVLSNLSYSATEETLQEVFEK----ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSC-NKREIEGRAIRLELQGPR 561
Cdd:cd12612   3 SLFVGDLTPEVDDGMLYEFFLKrypsCKGAKVVLDQLGNSRGYGFVRFSDENEQKRALTECqGASGLGGKPIRLSVAIPK 82
RRM1_hnRNPA0 cd12326
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) ...
574-642 4.09e-06

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) and similar proteins; This subfamily corresponds to the RRM1 of hnRNP A0 which is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409764 [Multi-domain]  Cd Length: 79  Bit Score: 45.30  E-value: 4.09e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE--IDGNKVTLDWA 642
Cdd:cd12326   5 LFIGGLNVQTTEEGLRAHFEayGQLTdCVVVVNPQTKRSRCFGFVTYSSAEEADAAMAAAPhvVDGNNVELKRA 78
RRM3_MYEF2 cd12662
RNA recognition motif 3 (RRM3) found in vertebrate myelin expression factor 2 (MEF-2); This ...
395-461 4.18e-06

RNA recognition motif 3 (RRM3) found in vertebrate myelin expression factor 2 (MEF-2); This subgroup corresponds to the RRM3 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity.


Pssm-ID: 410063 [Multi-domain]  Cd Length: 77  Bit Score: 44.96  E-value: 4.18e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   395 LLAKNLPYKVTQDELKEVFEDA-----AEIRLvsKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12662   2 IFVRNLPFDLTWQKLKEKFSQCghvmfAEIKM--ENGKSKGCGTVRFDSPESAEKACRLMNGIKISGREIDV 71
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
574-641 4.28e-06

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 44.87  E-value: 4.28e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRaRIVT--DRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDW 641
Cdd:cd12240   1 LYVGNLSFYTTEEQIYELFSkcGDIK-RIIMglDKFKKTPCGFCFVEYYSREDAENAVKylNGtKLDDRIIRVDW 74
RRM_YRA1_MLO3 cd12267
RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA ...
399-458 4.30e-06

RNA recognition motif (RRM) found in yeast RNA annealing protein YRA1 (Yra1p), yeast mRNA export protein mlo3 and similar proteins; This subfamily corresponds to the RRM of Yra1p and mlo3. Yra1p is an essential nuclear RNA-binding protein encoded by Saccharomyces cerevisiae YRA1 gene. It belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p possesses potent RNA annealing activity and interacts with a number of proteins involved in nuclear transport and RNA processing. It binds to the mRNA export factor Mex67p/TAP and couples transcription to export in yeast. Yra1p is associated with Pse1p and Kap123p, two members of the beta-importin family, further mediating transport of Yra1p into the nucleus. In addition, the co-transcriptional loading of Yra1p is required for autoregulation. Yra1p consists of two highly conserved N- and C-terminal boxes and a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This subfamily includes RNA-annealing protein mlo3, also termed mRNA export protein mlo3, which has been identified in fission yeast as a protein that causes defects in chromosome segregation when overexpressed. It shows high sequence similarity with Yra1p.


Pssm-ID: 409711 [Multi-domain]  Cd Length: 78  Bit Score: 45.10  E-value: 4.30e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   399 NLPYKVTQDELKEVFEDA-AEIRLVS----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRS 458
Cdd:cd12267   7 NLPKDVTEAQIREYFVSQiGPIKRVLlsynEGGKSTGIANITFKRAGDATKAYDKFNGRLDDGNR 71
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
396-460 4.51e-06

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 44.85  E-value: 4.51e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   396 LAKNlpykVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12365   6 LTRN----VTKDHLKEIFSVYGTVKNVDlpidrEPNLPRGYAYVEFESPEDAEKAIKHMDGGQIDGQEVT 71
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
393-454 4.69e-06

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 45.88  E-value: 4.69e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIR--LVSKD---GKSKGIAYIEFKTEADAEKTFeeKQGTEI 454
Cdd:cd12676   2 RTLFVRNLPFDATEDELYSHFSQFGPLKyaRVVKDpatGRSKGTAFVKFKNKEDADNCL--SAAPEA 66
RRM2_TIA1 cd12618
RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
574-641 4.95e-06

RNA recognition motif 2 (RRM2) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM2 of p40-TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1), and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and function as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410030 [Multi-domain]  Cd Length: 78  Bit Score: 45.00  E-value: 4.95e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   574 LFVKGLSEDTTEETLKESFDGSVR---ARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGE-IDGNKVTLDW 641
Cdd:cd12618   5 VFVGDLSPEITTEDIKAAFAPFGRisdARVVKDMATGKSKGYGFVSFFNKWDAENAIQqmGGQwLGGRQIRTNW 78
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
485-544 5.28e-06

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 44.91  E-value: 5.28e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   485 SKTLVLSNLSYSATEETLQEVF--------EKATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCN 544
Cdd:cd12239   1 SNRLYVKNLSKRVSEKDLKYIFgrfvdsssEEKNMFDIRLMTEGRMKGQAFITFPSEELAEKALNLTN 68
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
486-556 5.44e-06

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 44.53  E-value: 5.44e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   486 KTLVLSNLSYSATEETLQEVFekATF-----IKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12320   1 TKLIVKNVPFEATRKEIRELF--SPFgqlksVRLPKKFDGSHRGFAFVEFVTKQEAQNAMEALKSTHLYGRHLVLE 74
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
400-461 5.55e-06

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 44.62  E-value: 5.55e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   400 LPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSISL 461
Cdd:cd12271   6 IPYYSTEAEIRSYFSSCGEVRSVDlmrfpDSGNFRGIAFITFKTEEAAKRAL-ALDGEMLGNRFLKV 71
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
488-553 5.96e-06

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 44.91  E-value: 5.96e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIKVPQ----NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12324   9 IFVTGVHEEAQEEDIHDKFAEFGEIKNLHlnldRRTGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTI 78
RRM2_TIAR cd12617
RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup ...
574-642 6.08e-06

RNA recognition motif 2 (RRM2) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM2 of nucleolysin TIAR, also termed TIA-1-related protein, a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal, highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410029 [Multi-domain]  Cd Length: 80  Bit Score: 44.60  E-value: 6.08e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDWA 642
Cdd:cd12617   4 VFVGDLSPEITTEDIKSAFApfGKISdARVVKDMATGKSKGYGFVSFYNKLDAENAivhMGGQWLGGRQIRTNWA 78
RRM1_gar2 cd12447
RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This ...
308-379 6.10e-06

RNA recognition motif 1 (RRM1) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM1 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409881 [Multi-domain]  Cd Length: 76  Bit Score: 44.73  E-value: 6.10e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   308 NLFVGNLNFNKSAPELKTGISDV-FAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLE 379
Cdd:cd12447   1 TLFVGGLSWNVDDPWLKKEFEKYgGVISARVITDRGSGRSKGYGYVDFATPEAAQKALAaMSGKEIDGRQINVD 74
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
393-470 6.12e-06

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 44.92  E-value: 6.12e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   393 RTLLAKNLP--YKVTQdELKEVFEDAAEIR---LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI--SLYYTG 465
Cdd:cd12390   3 KCLFVDRLPkdFRDGS-ELRKLFSQVGKPTfcqLAMGNGVPRGFAFVEFASAEDAEEAQQLLNGHDLQGSPIrvSFGNPG 81

                ....*
gi 189306   466 EKGQN 470
Cdd:cd12390  82 RPGAS 86
RRM_RNPS1 cd12365
RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and ...
488-556 6.67e-06

RNA recognition motif (RRM) found in RNA-binding protein with serine-rich domain 1 (RNPS1) and similar proteins; This subfamily corresponds to the RRM of RNPS1 and its eukaryotic homologs. RNPS1, also termed RNA-binding protein prevalent during the S phase, or SR-related protein LDC2, was originally characterized as a general pre-mRNA splicing activator, which activates both constitutive and alternative splicing of pre-mRNA in vitro.It has been identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and is directly involved in mRNA surveillance. Furthermore, RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 (casein kinase II) protein kinase phosphorylation. It can also function as a squamous-cell carcinoma antigen recognized by T cells-3 (SART3)-binding protein, and is involved in the regulation of mRNA splicing. RNPS1 contains an N-terminal serine-rich (S) domain, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and the C-terminal arginine/serine/proline-rich (RS/P) domain.


Pssm-ID: 409800 [Multi-domain]  Cd Length: 73  Bit Score: 44.47  E-value: 6.67e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   488 LVLSNLSYSATEETLQEVFekATF-----IKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12365   1 LHVGKLTRNVTKDHLKEIF--SVYgtvknVDLPIDRePNLPRGYAYVEFESPEDAEKAIKHMDGGQIDGQEVTVE 73
RRM1_RRT5 cd12409
RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) ...
398-459 6.92e-06

RNA recognition motif 1 (RRM1) found in yeast regulator of rDNA transcription protein 5 (RRT5) and similar proteins; This subfamily corresponds to the RRM1 of the lineage specific family containing a group of uncharacterized yeast regulators of rDNA transcription protein 5 (RRT5), which may play roles in the modulation of rDNA transcription. RRT5 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409843 [Multi-domain]  Cd Length: 84  Bit Score: 44.57  E-value: 6.92e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   398 KNLPYKVTQDELKEVFEDAAEIRLV----------SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12409   5 SNLSYSTTEEELEELLKDYKPVSVLipsytvrgfrSRKHRPLGIAYAEFSSVEEAEKVVKDLNGKVFKGRKL 76
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
492-627 7.16e-06

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 49.30  E-value: 7.16e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     492 NLSYSATEETLQEVFEKATFIKVPQNQ----NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELqgPRGSPNAR 567
Cdd:TIGR01645 114 SISFELREDTIRRAFDPFGPIKSINMSwdpaTGKHKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIKVGR--PSNMPQAQ 191
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306     568 ---------SQPSKTLFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:TIGR01645 192 piidmvqeeAKKFNRIYVASVHPDLSETDIKsvfEAFGEIVKCQLARAPTGRGHKGYGFIEYNNLQSQSEAI 263
U2AF_lg TIGR01642
U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of ...
484-626 7.31e-06

U2 snRNP auxilliary factor, large subunit, splicing factor; These splicing factors consist of an N-terminal arginine-rich low complexity domain followed by three tandem RNA recognition motifs (pfam00076). The well-characterized members of this family are auxilliary components of the U2 small nuclear ribonuclearprotein splicing factor (U2AF). These proteins are closely related to the CC1-like subfamily of splicing factors (TIGR01622). Members of this subfamily are found in plants, metazoa and fungi.


Pssm-ID: 273727 [Multi-domain]  Cd Length: 509  Bit Score: 49.12  E-value: 7.31e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     484 ESKTLVLSNLSYSATEETLQEVFEkATFIKVPQNQNG-----------KSKGYAFIEFASFEDAKEAL--------NSCN 544
Cdd:TIGR01642 174 QARRLYVGGIPPEFVEEAVVDFFN-DLMIATGYHKAEdgkhvssvninKEKNFAFLEFRTVEEATFAMaldsiiysNVFL 252
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     545 KRE-----IEGRAIRLELQGPRGSPNA----RSQPSKT-------LFVKGLSEDTTEETLKE---SFdGSVRA-RIVTDR 604
Cdd:TIGR01642 253 KIRrphdyIPVPQITPEVSQKNPDDNAknveKLVNSTTvldskdrIYIGNLPLYLGEDQIKElleSF-GDLKAfNLIKDI 331
                         170       180
                  ....*....|....*....|..
gi 189306     605 ETGSSKGFGFVDFNSEEDAKEA 626
Cdd:TIGR01642 332 ATGLSKGYAFCEYKDPSVTDVA 353
RRM1_TDP43 cd12321
RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
395-457 7.49e-06

RNA recognition motif 1 (RRM1) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM1 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409760 [Multi-domain]  Cd Length: 74  Bit Score: 44.32  E-value: 7.49e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFeeKQGTEIDGR 457
Cdd:cd12321   2 LIVLGLPWKTTEQDLKEYFSTFGEVLMVqvkkdPKTGRSKGFGFVRFASYETQVKVL--SQRHMIDGR 67
RRM6_RBM19 cd12571
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
485-556 7.58e-06

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409985 [Multi-domain]  Cd Length: 79  Bit Score: 44.34  E-value: 7.58e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   485 SKTLVlSNLSYSATEETLQEVFE---KATFIKVPQN--QNGKSKGYAFIEFASFEDAKEALNS-CNKREIEGRAIRLE 556
Cdd:cd12571   1 SKILV-RNIPFQATVKEVRELFStfgELKTVRLPKKmgGTGQHRGFGFVDFITKQDAKRAFDAlCHSTHLYGRRLVLE 77
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
571-634 7.72e-06

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 44.33  E-value: 7.72e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAMEdgEIDG 634
Cdd:cd12566   2 TGRLFLRNLPYSTKEDDLQKLFSkfGEVsEVHVPIDKKTKKSKGFAYVLFLDPEDAVQAYN--ELDG 66
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
485-566 8.01e-06

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 45.11  E-value: 8.01e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12676   1 GRTLFVRNLPFDATEDELYSHFSQFGPLKyarvVKDPATGRSKGTAFVKFKNKEDADNCLSAAPEAQSTSLLEKYSLEQD 80

                ....*.
gi 189306   561 RGSPNA 566
Cdd:cd12676  81 ITDDVS 86
RRM4_RBM19_RRM3_MRD1 cd12317
RNA recognition motif 4 (RRM4) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
394-447 8.70e-06

RNA recognition motif 4 (RRM4) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 3 (RRM3) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM4 of RBM19 and the RRM3 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologues exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409756 [Multi-domain]  Cd Length: 72  Bit Score: 44.17  E-value: 8.70e-06
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEI-RLVSKDGKSkgIAYIEFKTEADAEKTFE 447
Cdd:cd12317   2 VILVKNLPFGATEEELRELFEKFGTLgRLLLPPSRT--IALVEFLEPQDARRAFK 54
RRM1_hnRNPA1 cd12761
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
572-637 9.08e-06

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, and is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. hnRNP A1, together with the scaffold protein septin 6, serves as host protein to form a complex with NS5b and viral RNA, and further plays important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 410154 [Multi-domain]  Cd Length: 81  Bit Score: 44.28  E-value: 9.08e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRARIVT-DRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNKV 637
Cdd:cd12761   3 RKLFIGGLSFETTDESLRSHFEqwGTLTDCVVMrDPNTKRSRGFGFVTYATVEEVDAAMNarPHKVDGRVV 73
RRM2_SECp43 cd12612
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
573-629 9.20e-06

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM2 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410024 [Multi-domain]  Cd Length: 82  Bit Score: 44.29  E-value: 9.20e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   573 TLFVKGLSEDTTEETLKESFD---GSVR-ARIVTDrETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd12612   3 SLFVGDLTPEVDDGMLYEFFLkryPSCKgAKVVLD-QLGNSRGYGFVRFSDENEQKRALTE 62
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
484-555 9.84e-06

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 43.92  E-value: 9.84e-06
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEK---ATFIKVP-QNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12567   1 ESGRLFVRNLPYTCTEEDLEKLFSKygpLSEVHFPiDSLTKKPKGFAFVTYMIPEHAVKAYAELDGTVFQGRLLHL 76
RRM1_RBM5 cd12752
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 5 (RBM5); This subgroup ...
571-645 9.98e-06

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 5 (RBM5); This subgroup corresponds to the RRM1 of RBM5, also termed protein G15, or putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9, a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both, RBM5 and RBM6, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain.


Pssm-ID: 410146 [Multi-domain]  Cd Length: 87  Bit Score: 44.55  E-value: 9.98e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   571 SKTLFVKGLSEDTTEETLK---ESFDGSVRARI-VTDRETGSSKGFGFVDFNSEEDAKEAMEDGE----IDGNKVTLDWA 642
Cdd:cd12752   5 SKTIMLRGLPINITENDIReliESFEGPQPADVrLMKRKTGVSRGFAFVEFYHLQDATSWMEANQkklvIQGKTIAMHYS 84

                ...
gi 189306   643 KPK 645
Cdd:cd12752  85 NPR 87
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
488-556 1.01e-05

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 43.78  E-value: 1.01e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12417   2 LWISGLSDTTKAADLKKIFSKYGKVVsakvVTSARTPGSRCYGYVTMASVEEADLCIKSLNKTELHGRVITVE 74
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
394-462 1.06e-05

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 43.76  E-value: 1.06e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLY 462
Cdd:cd12680   2 KLLVSNLDFGVSDADIKELFAEFGTLKKAAvhydRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQ 74
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
488-555 1.12e-05

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 43.96  E-value: 1.12e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFI---KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12614   1 LYVGNLDPRVTEDLLQEIFAVTGPVencKIIPDKNSKGVNYGFVEYYDRRSAEIAIQTLNGRQIFGQEIKV 71
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
485-555 1.13e-05

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 44.05  E-value: 1.13e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQN---GKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd21619   1 SNTIYVGNIDMTINEDALEKIFSRygqVESVRRPPIHTdkaDRTTGFGFIKYTDAESAERAMQQADGILLGRRRLVV 77
RRM1_hnRNPA_like cd12578
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; ...
574-645 1.13e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A subfamily; This subfamily corresponds to the RRM1 in hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. It has been identified as the substrate for MAPKAP-K2 and may be involved in the lipopolysaccharide (LPS)-induced post-transcriptional regulation of tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase 2 (COX-2) and macrophage inflammatory protein 2 (MIP-2). hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409992 [Multi-domain]  Cd Length: 78  Bit Score: 43.97  E-value: 1.13e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRARIVT-DRETGSSKGFGFVDFNSEEDAKEAMED--GEIDGNKVTLDWAKPK 645
Cdd:cd12578   2 LFIGGLSYETTDDSLRNHFEqwGEITDVVVMkDPATKRSRGFGFVTYSSASEVDAAMNArpHKVDGRVVEPKRAVPR 78
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
488-554 1.17e-05

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 43.55  E-value: 1.17e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   488 LVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKgYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12352   1 LYVGNLDRQVTEDLILQLFSQigpCKSCKMITEHGGNDP-YCFVEFYEHNHAAAALQAMNGRKILGKEVK 69
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
488-551 1.18e-05

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 43.80  E-value: 1.18e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   488 LVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGR 551
Cdd:cd12381   4 LYVKNLDDTIDDEKLREEFSPfgtITSAKVMTDEGGRSKGFGFVCFSSPEEATKAVTEMNGRIIGGK 70
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
309-378 1.21e-05

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 43.77  E-value: 1.21e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   309 LFVGNLNFNKSAPELKtGISDVFAKNDLAVV--DVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKL 378
Cdd:cd12284   1 LYVGSLHFNITEDMLR-GIFEPFGKIEFVQLqkDPETGRSKGYGFIQFRDAEDAKKALEqLNGFELAGRPMKV 72
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
340-444 1.41e-05

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 47.70  E-value: 1.41e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     340 DVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLE--KPKGKDSKKErdarTLLAKNLPYKVTQDELKEVFEDA 416
Cdd:TIGR01659 142 DYKTGYSFGYAFVDFGSEADSQRAIKnLNGITVRNKRLKVSyaRPGGESIKDT----NLYVTNLPRTITDDQLDTIFGKY 217
                          90       100       110
                  ....*....|....*....|....*....|....*
gi 189306     417 AEIrlVSKD-------GKSKGIAYIEFKTEADAEK 444
Cdd:TIGR01659 218 GQI--VQKNilrdkltGTPRGVAFVRFNKREEAQE 250
RRM3_RBM46 cd12496
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This ...
486-560 1.42e-05

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM3 of RBM46, also termed cancer/testis antigen 68 (CT68), is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409919 [Multi-domain]  Cd Length: 74  Bit Score: 43.46  E-value: 1.42e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12496   2 KVLYVRNLMISTTEETIKAEFNKFKPGVVERVK--KLRDYAFVHFFNREDAVAAMSVMNGKCIDGASIEVTLAKP 74
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
574-646 1.44e-05

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 43.88  E-value: 1.44e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV--RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNK-VTLDWAKPKG 646
Cdd:cd12335   4 LFIGNLDPEVDEKLLYDTFSafGVIlqTPKIMRDPDTGNSKGFGFVSFDSFEASDAAIEamNGQYLCNRpITVSYAFKKD 83
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
573-643 1.46e-05

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 43.20  E-value: 1.46e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   573 TLFVKGLSEDTTE----ETLKESFDGSVRARIvtdretgsSKGFGFVDFNSEEDAKEAMED---GEIDGNKVTLDWAK 643
Cdd:cd12233   1 TLFVVGFDPGTTReediEKLFEPFGPLVRCDI--------RKTFAFVEFEDSEDATKALEAlhgSRIDGSVLTVEFVK 70
RRM3_hnRNPM_like cd12387
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
395-459 1.51e-05

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409821 [Multi-domain]  Cd Length: 71  Bit Score: 43.34  E-value: 1.51e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVS---KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12387   1 IFVRNLPFDYTWQKLKDKFKDCGHVTFASikmENGKSKGCGTVRFDSPEDAENACRMMNGSKQSGREI 68
RRM1_SF3B4 cd12334
RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
490-555 1.58e-05

RNA recognition motif 1 (RRM1) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM1 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409771 [Multi-domain]  Cd Length: 74  Bit Score: 43.36  E-value: 1.58e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   490 LSNLSYSATEETLQEVFEKA---TFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12334   3 VGNLDEKVTEELLWELFIQAgpvVNVHMPKDRvTQQHQGYGFVEFLSEEDADYAIKIMNMIKLYGKPIRV 72
RRM2_SRSF1_4_like cd12339
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and ...
398-461 1.60e-05

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and similar proteins; This subfamily corresponds to the RRM2 of several serine/arginine (SR) proteins that have been classified into two subgroups. The first subgroup consists of serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS) and serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). The second subgroup is composed of serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C) and plant pre-mRNA-splicing factor SF2 (SR1). These SR proteins are mainly involved in regulating constitutive and alternative pre-mRNA splicing. They also have been implicated in transcription, genomic stability, mRNA export and translation. All SR proteins in this family, except SRSF5, undergo nucleocytoplasmic shuttling, suggesting their widespread roles in gene expression. These SR proteins share a common domain architecture comprising two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. Both domains can directly contact with RNA. The RRMs appear to determine the binding specificity and the SR domain also mediates protein-protein interactions. In addition, this subfamily includes the yeast nucleolar protein 3 (Npl3p), also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. It is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein with two RRMs, separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409776 [Multi-domain]  Cd Length: 70  Bit Score: 43.35  E-value: 1.60e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   398 KNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12339   6 SNLPERASWQDLKDFMRKAGEVTYADVHRDREGEGVVEFTSEEDMKRAIEKLDGTEFNGRRIRV 69
RRM1_RBM5_like cd12561
RNA recognition motif 1 (RRM1) found in RNA-binding protein 5 (RBM5) and similar proteins; ...
394-463 1.65e-05

RNA recognition motif 1 (RRM1) found in RNA-binding protein 5 (RBM5) and similar proteins; This subgroup corresponds to the RRM1 of RNA-binding protein 5 (RBM5 or LUCA15 or H37), RNA-binding protein 10 (RBM10 or S1-1) and similar proteins. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor; it specifically binds poly(G) RNA. RBM10, a paralog of RBM5, may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. Both, RBM5 and RBM10, contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409977 [Multi-domain]  Cd Length: 81  Bit Score: 43.51  E-value: 1.65e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   394 TLLAKNLPYKVTQDELKEVFED----AAEIRLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGT-EIDGRSISLYY 463
Cdd:cd12561   4 TIMLRGLPLSVTEEDIRNALVShgvqPKDVRLMRRKttGASRGFAFVEFMSLEEATRWMEANQGKlQLQGYKITLHY 80
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
309-378 1.70e-05

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 43.28  E-value: 1.70e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   309 LFVGNLNFNKSAPELKTGISDVfakndLAVVDVRIGMTRK------FGYVDFESAEDLEKAL-ELTGLKVFGNEIKL 378
Cdd:cd12399   1 LYVGNLPYSASEEQLKSLFGQF-----GAVFDVKLPMDREtkrprgFGFVELQEEESAEKAIaKLDGTDFMGRTIRV 72
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
495-554 1.71e-05

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 43.43  E-value: 1.71e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   495 YSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12371  10 PDLSEDDIKSVFEAFGKIKscslAPDPETGKHKGYGFIEYENPQSAQDAIASMNLFDLGGQYLR 73
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
307-379 1.78e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 43.36  E-value: 1.78e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   307 FNLFVGNLNFNKSAPELKTgisdvFAKNDLAVVDVRI------GMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLE 379
Cdd:cd12400   1 YILFVGNLPYDTTAEDLKE-----HFKKAGEPPSVRLltdkktGKSKGCAFVEFDNQKALQKALKLHHTSLGGRKINVE 74
RRM1_La cd12291
RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins; This subfamily ...
394-449 1.80e-05

RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins; This subfamily corresponds to the RRM1 of La autoantigen, also termed Lupus La protein, or La ribonucleoprotein, or Sjoegren syndrome type B antigen (SS-B), a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. La contains an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also possesses a short basic motif (SBM) and a nuclear localization signal (NLS) at the C-terminus.


Pssm-ID: 409733 [Multi-domain]  Cd Length: 73  Bit Score: 42.96  E-value: 1.80e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS----KDGKS-KGIAYIEFKTEADAEKTFEEK 449
Cdd:cd12291   1 TVYVKGFPLDATLDDIQEFFEKKGKVENVRmrrdLDSKEfKGSVFVEFKTEEEAKKFLEKE 61
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
399-444 1.85e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 43.27  E-value: 1.85e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 189306   399 NLPYKVTQDELKEVFEDAAEI-RL-VSKD---GKSKGIAYIEFKTEADAEK 444
Cdd:cd12408   6 NLSEDATEEDLRELFRPFGPIsRVyLAKDketGQSKGFAFVTFETREDAER 56
RRM1_hnRNPA2B1 cd12762
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP ...
572-637 1.89e-05

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A2/B1 which is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). Many mRNAs, such as myelin basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), carboxyanhydrase II (CAII), microtubule-associated protein tau, and amyloid precursor protein (APP) are trafficked by hnRNP A2/B1. hnRNP A2/B1 also functions as a splicing factor that regulates alternative splicing of the tumor suppressors, such as BIN1, WWOX, the antiapoptotic proteins c-FLIP and caspase-9B, the insulin receptor (IR), and the RON proto-oncogene among others. Moreover, the overexpression of hnRNP A2/B1 has been described in many cancers. It functions as a nuclear matrix protein involving in RNA synthesis and the regulation of cellular migration through alternatively splicing pre-mRNA. It may play a role in tumor cell differentiation. hnRNP A2/B1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 410155 [Multi-domain]  Cd Length: 81  Bit Score: 43.50  E-value: 1.89e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRARIVT-DRETGSSKGFGFVDFNS--EEDAKEAMEDGEIDGNKV 637
Cdd:cd12762   3 RKLFIGGLSFETTEESLRNYYEqwGKLTDCVVMrDPASKRSRGFGFVTFSSmaEVDAAMAARPHSIDGRVV 73
RRM_THOC4 cd12680
RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This ...
487-557 2.10e-05

RNA recognition motif (RRM) found in THO complex subunit 4 (THOC4) and similar proteins; This subgroup corresponds to the RRM of THOC4, also termed transcriptional coactivator Aly/REF, or ally of AML-1 and LEF-1, or bZIP-enhancing factor BEF, an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus. THOC4 was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid. It might be a novel transcription cofactor for erythroid-specific genes.


Pssm-ID: 410081 [Multi-domain]  Cd Length: 75  Bit Score: 42.99  E-value: 2.10e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   487 TLVLSNLSYSATEETLQEVFEKATFIK---VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12680   2 KLLVSNLDFGVSDADIKELFAEFGTLKkaaVHYDRSGRSLGTAEVVFERRADALKAMKQYNGVPLDGRPMKIQL 75
RRM1_RBM10 cd12753
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 10 (RBM10); This ...
392-467 2.13e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 10 (RBM10); This subgroup corresponds to the RRM1 of RBM10, also termed G patch domain-containing protein 9, or RNA-binding protein S1-1 (S1-1), a paralog of putative tumor suppressor RNA-binding protein 5 (RBM5 or LUCA15 or H37). It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. RBM10 is structurally related to RBM5 and RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 410147 [Multi-domain]  Cd Length: 84  Bit Score: 43.39  E-value: 2.13e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   392 ARTLLAKNLPYKVTQDELKEVFED----AAEIRLV--SKDGKSKGIAYIEFKTEADAEKTFEEKQGT-EIDGRSISLYYT 464
Cdd:cd12753   1 SNIIMLRMLPQSATENDIRGQLQAhgvqPREVRLMrnKSSGQSRGFAFVEFNHLQDATRWMEANQHSlTILGQKVSMHYS 80

                ...
gi 189306   465 GEK 467
Cdd:cd12753  81 DPK 83
RRM2_RAVER cd12389
RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
488-554 2.20e-05

RNA recognition motif 2 (RRM2) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM2 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409823 [Multi-domain]  Cd Length: 77  Bit Score: 43.07  E-value: 2.20e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12389   2 LCVTNLPLSFTEEQFEELVRPYGNVErcflVYSEVTGESKGYGFVEYTSKESAIRAKNQLHGRQIGGRALQ 72
sex-lethal TIGR01659
sex-lethal family splicing factor; This model describes the sex-lethal family of splicing ...
555-647 2.39e-05

sex-lethal family splicing factor; This model describes the sex-lethal family of splicing factors found in Dipteran insects. The sex-lethal phenotype, however, may be limited to the Melanogasters and closely related species. In Drosophila the protein acts as an inhibitor of splicing. This subfamily is most closely related to the ELAV/HUD subfamily of splicing factors (TIGR01661).


Pssm-ID: 273740 [Multi-domain]  Cd Length: 346  Bit Score: 46.93  E-value: 2.39e-05
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     555 LELQGPRGSPNARSQPSKT-LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME-- 628
Cdd:TIGR01659  90 LNSLGSGGSDDNDTNNSGTnLIVNYLPQDMTDRELYALFRtiGPINTcRIMRDYKTGYSFGYAFVDFGSEADSQRAIKnl 169
                          90       100
                  ....*....|....*....|
gi 189306     629 DGEIDGNK-VTLDWAKPKGE 647
Cdd:TIGR01659 170 NGITVRNKrLKVSYARPGGE 189
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
393-459 2.47e-05

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 42.77  E-value: 2.47e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEI---RLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12407   1 KRLHVSNIPFRFRDPDLRQMFGQFGTIldvEIIFNERGSKGFGFVTFANSADADRAREKLNGTVVEGRKI 70
RRM2_hnRNPM_like cd12386
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
399-442 2.56e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409820 [Multi-domain]  Cd Length: 74  Bit Score: 42.73  E-value: 2.56e-05
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*...
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS----KDGKSKGIAYIEFKTEADA 442
Cdd:cd12386   5 NLDYKVGWKKLKEVFKLAGKVVRADiredKDGKSRGMGVVQFEHPIEA 52
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
575-638 2.62e-05

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 42.68  E-value: 2.62e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   575 FVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDF---NSEEDAKeAMEDGEIDGNKVT 638
Cdd:cd12306   3 YVGNVDYGTTPEELQAHFKscGTInRVTILCDKFTGQPKGFAYIEFvdkSSVENAL-LLNESEFRGRQIK 71
RRM3_hnRNPR cd12494
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
486-560 2.91e-05

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM3 of hnRNP R. a ubiquitously expressed nuclear RNA-binding protein that specifically bind mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP R is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, as well as in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP R binds RNA through its RRM domains.


Pssm-ID: 409917 [Multi-domain]  Cd Length: 72  Bit Score: 42.71  E-value: 2.91e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFekATFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12494   2 KVLFVRNLATTVTEEILEKTF--SQFGKLERVK--KLKDYAFVHFEDRDAAVKAMDEMNGKEVEGEEIEIVLAKP 72
RRM2_MEI2_like cd12529
RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to ...
487-556 2.93e-05

RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409948 [Multi-domain]  Cd Length: 71  Bit Score: 42.50  E-value: 2.93e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   487 TLVLSNLSYSATEETLQEVFEKATFIKVPQNQNGKsKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12529   3 TLVVFNLDPSISNDDLHQIFGAYGEIKEIRETPNK-RHHKFIEFYDVRSAEAALKALNKSEIAGKRIKLE 71
RRM2_SRSF6 cd12766
RNA recognition motif 2 (RRM2) found found in vertebrate serine/arginine-rich splicing factor ...
395-461 3.01e-05

RNA recognition motif 2 (RRM2) found found in vertebrate serine/arginine-rich splicing factor 6 (SRSF6); This subgroup corresponds to the RRM2 of SRSF6, also termed pre-mRNA-splicing factor SRp55, an essential splicing regulatory serine/arginine (SR) protein that preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. For instance, it does not bind to the purine-rich sequence in the calcitonin-specific ESE, but binds to a region adjacent to the purine tract. Moreover, cellular levels of SRSF6 may control tissue-specific alternative splicing of the calcitonin/ calcitonin gene-related peptide (CGRP) pre-mRNA. SRSF6 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410159 [Multi-domain]  Cd Length: 73  Bit Score: 42.71  E-value: 3.01e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12766   3 LIVENLSSRCSWQDLKDFMRQAGEVTYADAHKERTNEGVIEFRSYSDMKRALEKLDGTEINGRKIRL 69
RRM3_HRB1_GBP2 cd21607
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, ...
393-463 3.12e-05

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410186 [Multi-domain]  Cd Length: 79  Bit Score: 42.70  E-value: 3.12e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   393 RTLLAKNLPYKVTQDELKEVFE-----DAAEIRLVSKdGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd21607   3 NTIYCSNLPLSTAESDLYDLFEtigkvNNAELKYDET-GDPTGSAVVEYENLDDADVCISKLNNYNYGGCDLKISY 77
RRM5_RBM12_like cd12515
RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; ...
397-462 3.34e-05

RNA recognition motif 5 (RRM5) found in RNA-binding protein RBM12, RBM12B and similar proteins; This subfamily corresponds to the RRM5 of RBM12 and RBM12B. RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. RBM12B show high sequence semilarity with RBM12. It contains five distinct RRMs as well. The biological roles of both RBM12 and RBM12B remain unclear.


Pssm-ID: 409937 [Multi-domain]  Cd Length: 75  Bit Score: 42.59  E-value: 3.34e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   397 AKNLPYKVTQDELKEVF------EDAAeIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLY 462
Cdd:cd12515   5 MRNLPFKATIEDILDFFygyrviPDSV-SIRYNDDGQPTGDARVAFPSPREARRAVRELNNRPLGGRKVKLF 75
RRM2_SECp43_like cd12345
RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
487-555 3.36e-05

RNA recognition motif 2 (RRM2) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM2 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409781 [Multi-domain]  Cd Length: 80  Bit Score: 42.64  E-value: 3.36e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   487 TLVLSNLSYSATEETLQEVFeKATF-----IKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12345   3 SLFVGDLAPDVTDYQLYETF-SARYpsvrgAKVVMDPvTGRSKGYGFVRFGDESEQDRALTEMQGVYLGSRPIRV 76
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
492-553 3.38e-05

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 42.29  E-value: 3.38e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   492 NLSYSATEETLQEVFEKATFIK---VPQNQN-GKSKGYAFIEFASFEDAKEALnSCNKREIEGRAI 553
Cdd:cd12306   6 NVDYGTTPEELQAHFKSCGTINrvtILCDKFtGQPKGFAYIEFVDKSSVENAL-LLNESEFRGRQI 70
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
301-385 3.70e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 42.66  E-value: 3.70e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   301 TEPttAFNLFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLEK 380
Cdd:cd12401   2 TEP--PFTAYVGNLPFNTVQGDLDAIFKDLKVRSVRLVRDRETDKFKGFCYVEFEDLESLKEALEYDGALFEDRPLRVDI 79

                ....*
gi 189306   381 PKGKD 385
Cdd:cd12401  80 AEGRK 84
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
405-459 4.02e-05

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 42.40  E-value: 4.02e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   405 TQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSI 459
Cdd:cd12451  16 IRDELREHFGECGEVTNVRiptdrETGELKGFAYIEFSTKEAKEKAL-ELNGSDIAGGNL 74
RRM_eIF3B cd12278
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B ...
499-545 4.10e-05

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit B (eIF-3B) and similar proteins; This subfamily corresponds to the RRM domain in eukaryotic translation initiation factor 3 (eIF-3), a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3B, also termed eIF-3 subunit 9, or Prt1 homolog, eIF-3-eta, eIF-3 p110, or eIF-3 p116, is the major scaffolding subunit of eIF-3. It interacts with eIF-3 subunits A, G, I, and J. eIF-3B contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is involved in the interaction with eIF-3J. The interaction between eIF-3B and eIF-3J is crucial for the eIF-3 recruitment to the 40 S ribosomal subunit. eIF-3B also binds directly to domain III of the internal ribosome-entry site (IRES) element of hepatitis-C virus (HCV) RNA through its N-terminal RRM, which may play a critical role in both cap-dependent and cap-independent translation. Additional research has shown that eIF-3B may function as an oncogene in glioma cells and can be served as a potential therapeutic target for anti-glioma therapy. This family also includes the yeast homolog of eIF-3 subunit B (eIF-3B, also termed PRT1 or eIF-3 p90) that interacts with the yeast homologs of eIF-3 subunits A(TIF32), G(TIF35), I(TIF34), J(HCR1), and E(Pci8). In yeast, eIF-3B (PRT1) contains an N-terminal RRM that is directly involved in the interaction with eIF-3A (TIF32) and eIF-3J (HCR1). In contrast to its human homolog, yeast eIF-3B (PRT1) may have potential to bind its total RNA through its RRM domain.


Pssm-ID: 409720 [Multi-domain]  Cd Length: 84  Bit Score: 42.57  E-value: 4.10e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 189306   499 EETLQEVFEKATFIKV-----PQNQNGKSKGYAFIEFASFEDAKEALNSCNK 545
Cdd:cd12278  21 KKVLTKIFSKFGSGKIvgiymPVDETGKTKGFAFVEYATPEEAKKAVKALNG 72
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
486-564 4.19e-05

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 42.36  E-value: 4.19e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIK---VPQN-QNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL-QGP 560
Cdd:cd12312   1 TSLFVRNVADDTRPDDLRREFGRYGPIVdvyIPLDfYTRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQFaQGD 80

                ....
gi 189306   561 RGSP 564
Cdd:cd12312  81 RKTP 84
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
492-554 4.29e-05

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 42.48  E-value: 4.29e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFekATFIKVPQ------NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12619   8 DLSPEVTDAALFNAF--SDFPSCSDarvmwdQKTGRSRGYGFVSFRSQQDAQNAINSMNGKWLGSRPIR 74
RRM2_hnRNPD cd12583
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) ...
574-628 4.37e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP D0, also termed AU-rich element RNA-binding protein 1, a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP D0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), in the middle and an RGG box rich in glycine and arginine residues in the C-terminal part. Each of RRMs can bind solely to the UUAG sequence specifically.


Pssm-ID: 241027 [Multi-domain]  Cd Length: 75  Bit Score: 42.30  E-value: 4.37e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12583   2 IFVGGLSPDTPEEKIREYFGafGEVESiELPMDNKTNKRRGFCFITFKEEEPVKKIME 59
RRM1_La cd12291
RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins; This subfamily ...
573-639 4.40e-05

RNA recognition motif 1 in La autoantigen (La or LARP3) and similar proteins; This subfamily corresponds to the RRM1 of La autoantigen, also termed Lupus La protein, or La ribonucleoprotein, or Sjoegren syndrome type B antigen (SS-B), a highly abundant nuclear phosphoprotein and well conserved in eukaryotes. It specifically binds the 3'-terminal UUU-OH motif of nascent RNA polymerase III transcripts and protects them from exonucleolytic degradation by 3' exonucleases. In addition, La can directly facilitate the translation and/or metabolism of many UUU-3' OH-lacking cellular and viral mRNAs, through binding internal RNA sequences within the untranslated regions of target mRNAs. La contains an N-terminal La motif (LAM), followed by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It also possesses a short basic motif (SBM) and a nuclear localization signal (NLS) at the C-terminus.


Pssm-ID: 409733 [Multi-domain]  Cd Length: 73  Bit Score: 42.19  E-value: 4.40e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   573 TLFVKGLSEDTTEETLKESFDGSVRARIVTDRETGSSKGFG---FVDFNSEEDAKEAMEDGEIDGNKVTL 639
Cdd:cd12291   1 TVYVKGFPLDATLDDIQEFFEKKGKVENVRMRRDLDSKEFKgsvFVEFKTEEEAKKFLEKEKLKYKGKEL 70
RRM_HP0827_like cd12399
RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; ...
399-459 4.44e-05

RNA recognition motif (RRM) found in Helicobacter pylori HP0827 protein and similar proteins; This subfamily corresponds to the RRM of H. pylori HP0827, a putative ssDNA-binding protein 12rnp2 precursor, containing one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The ssDNA binding may be important in activation of HP0827.


Pssm-ID: 409833 [Multi-domain]  Cd Length: 75  Bit Score: 42.12  E-value: 4.44e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12399   5 NLPYSASEEQLKSLFGQFGAVFDVklpmdRETKRPRGFGFVELQEEESAEKAIAKLDGTDFMGRTI 70
RRM3_Crp79_Mug28 cd21622
RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
574-645 4.68e-05

RNA recognition motif 3 (RRM3) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the three RRM motif.


Pssm-ID: 410201 [Multi-domain]  Cd Length: 92  Bit Score: 42.74  E-value: 4.68e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   574 LFVKGLSEDTTE-----ETLKESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNK-VTLDWAKPK 645
Cdd:cd21622   6 LFVKNLDDTVITnkedlEQLFSPFGQIVSSYLATYPGTGISKGFGFVAFSKPEDAAKAKEtlNGVMVGRKrIFVSYAERK 85
RRM_ALKBH8 cd12431
RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and ...
485-549 4.70e-05

RNA recognition motif (RRM) found in alkylated DNA repair protein alkB homolog 8 (ALKBH8) and similar proteins; This subfamily corresponds to the RRM of ALKBH8, also termed alpha-ketoglutarate-dependent dioxygenase ABH8, or S-adenosyl-L-methionine-dependent tRNA methyltransferase ABH8, expressed in various types of human cancers. It is essential in urothelial carcinoma cell survival mediated by NOX-1-dependent ROS signals. ALKBH8 has also been identified as a tRNA methyltransferase that catalyzes methylation of tRNA to yield 5-methylcarboxymethyl uridine (mcm5U) at the wobble position of the anticodon loop. Thus, ALKBH8 plays a crucial role in the DNA damage survival pathway through a distinct mechanism involving the regulation of tRNA modification. ALKBH8 localizes to the cytoplasm. It contains the characteristic AlkB domain that is composed of a tRNA methyltransferase motif, a motif homologous to the bacterial AlkB DNA/RNA repair enzyme, and a dioxygenase catalytic core domain encompassing cofactor-binding sites for iron and 2-oxoglutarate. In addition, unlike other AlkB homologs, ALKBH8 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal S-adenosylmethionine (SAM)-dependent methyltransferase (MT) domain.


Pssm-ID: 409865 [Multi-domain]  Cd Length: 80  Bit Score: 42.18  E-value: 4.70e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   485 SKTLVLSN--LSYSATEETLQEVFEKA----TFIKVPqnqnGKSkgYAFIEFASFEDAKEALNSCNKREIE 549
Cdd:cd12431   1 TQHLVVANggLGNGVSREQLLEVFEKYgtveDIVMLP----GKP--YSFVSFKSVEEAAKAYNALNGKELE 65
RRM1_RBM5 cd12752
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 5 (RBM5); This subgroup ...
389-464 4.72e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 5 (RBM5); This subgroup corresponds to the RRM1 of RBM5, also termed protein G15, or putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9, a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both, RBM5 and RBM6, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain.


Pssm-ID: 410146 [Multi-domain]  Cd Length: 87  Bit Score: 42.62  E-value: 4.72e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   389 ERDARTLLAKNLPYKVTQDELKEVFE-----DAAEIRLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGT-EIDGRSISL 461
Cdd:cd12752   2 EKESKTIMLRGLPINITENDIRELIEsfegpQPADVRLMKrKTGVSRGFAFVEFYHLQDATSWMEANQKKlVIQGKTIAM 81

                ...
gi 189306   462 YYT 464
Cdd:cd12752  82 HYS 84
RRM2_Hu_like cd12376
RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
574-628 4.83e-05

RNA recognition motif 2 (RRM2) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM2 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. Also included in this subfamily is the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 240822 [Multi-domain]  Cd Length: 79  Bit Score: 42.23  E-value: 4.83e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GS-VRARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12376   3 LYVSGLPKTMTQKELEQLFSqyGRiITSRILRDQLTGVSRGVGFIRFDKRIEAEEAIK 60
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
488-553 4.95e-05

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 42.08  E-value: 4.95e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   488 LVLSNLSYSA-TEETLQEVFE---KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12675   3 LIIRNLPWSIkKPVHLKKLFGrygKVVEATIPRKKGGKLSGFAFVTMKGRKNAEEALESVNGLEIDGRPV 72
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
395-463 5.58e-05

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 41.73  E-value: 5.58e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVSK----DGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12570   3 ILVKNLPFEATKKDVRTLFSSYGQLKSVRVpkkfDQSARGFAFVEFSTAKEALNAMNALKDTHLLGRRLVLQY 75
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
492-553 5.84e-05

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 41.90  E-value: 5.84e-05
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   492 NLSYSATEETLQEVFE------KATFIkvpqNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd21605   8 NLPFDCTWEDLKDHFSqvgeviRADIV----TSRGRHRGMGTVEFTNKEDVDRAISKFDHTMFMGREI 71
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
488-557 5.89e-05

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 41.78  E-value: 5.89e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12565   3 IIVKNLPKYVTEKRLKEHFSKkgeITDVKVMRTKDGKSRRFGFIGFKSEEEAQKAVKYFNKTFIDTSKISVEF 75
RRM3_ACF cd12498
RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
486-560 6.05e-05

RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM3 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409921 [Multi-domain]  Cd Length: 83  Bit Score: 41.83  E-value: 6.05e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12498   9 KILYVRNLMLSTTEETIEKEFSNIKPGAVERVK--KIRDYAFVHFYNREDAVNAMNALNGKVIDGSPIEVTLAKP 81
RRM_SLIRP cd12242
RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and ...
309-378 6.24e-05

RNA recognition motif (RRM) found in SRA stem-loop-interacting RNA-binding protein (SLIRP) and similar proteins; This subfamily corresponds to the RRM of SLIRP, a widely expressed small steroid receptor RNA activator (SRA) binding protein, which binds to STR7, a functional substructure of SRA. SLIRP is localized predominantly to the mitochondria and plays a key role in modulating several nuclear receptor (NR) pathways. It functions as a co-repressor to repress SRA-mediated nuclear receptor coactivation. It modulates SHARP- and SKIP-mediated co-regulation of NR activity. SLIRP contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is required for SLIRP's corepression activities.


Pssm-ID: 409688 [Multi-domain]  Cd Length: 73  Bit Score: 41.57  E-value: 6.24e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   309 LFVGNLNFNKSAPELKTGISDvFAK--NDLAVVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKL 378
Cdd:cd12242   2 LFVSNLPWTTGSSELKEYFSQ-FGKvkRCNLPFDKETGFHKGFGFVSFENEDGLRNALQKQKHIFEGNKVSV 72
RRM2_RMB19 cd12502
RNA recognition motif 2 (RRM2) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
487-555 6.48e-05

RNA recognition motif 2 (RRM2) found in RNA-binding protein 19 (RBM19) and similar proteins; This subfamily corresponds to the RRM2 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is also essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409925 [Multi-domain]  Cd Length: 72  Bit Score: 41.63  E-value: 6.48e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   487 TLVLSNLSYSATEETLQEVFE--KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNsCNKREIEGRAIRL 555
Cdd:cd12502   2 TVKLRGAPFNVKEKQIREFFSplKPVAIRIVKNAHGNKTGYVFVDFKSEEDVEKALK-RNKDYMGGRYIEV 71
RRM1_MRD1 cd12565
RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 ...
574-642 6.56e-05

RNA recognition motif 1 (RRM1) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM1 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409981 [Multi-domain]  Cd Length: 76  Bit Score: 41.78  E-value: 6.56e-05
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFDgsvRARIVTD-----RETGSSKGFGFVDFNSEEDAKEAME--DGE-IDGNKVTLDWA 642
Cdd:cd12565   3 IIVKNLPKYVTEKRLKEHFS---KKGEITDvkvmrTKDGKSRRFGFIGFKSEEEAQKAVKyfNKTfIDTSKISVEFA 76
RRM3_RBM47 cd12497
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This ...
572-644 6.62e-05

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM3 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409920 [Multi-domain]  Cd Length: 74  Bit Score: 41.49  E-value: 6.62e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   572 KTLFVKGLSEDTTEETLKESFD----GSV-RARIVTDretgsskgFGFVDFNSEEDAKEAMED---GEIDGNKVTLDWAK 643
Cdd:cd12497   2 KILYVRNLMIETTEDTIKKIFGqfnpGCVeRVKKIRD--------YAFVHFASRDDAVVAMNNlngTELEGSCIEVTLAK 73

                .
gi 189306   644 P 644
Cdd:cd12497  74 P 74
RRM2_hnRPDL cd12585
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
574-629 8.21e-05

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP DL) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 409998 [Multi-domain]  Cd Length: 75  Bit Score: 41.53  E-value: 8.21e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd12585   2 VFVGGLSPDTSEEQIKEYFGafGEIENiELPMDTKTNERRGFCFITYTDEEPVQKLLES 60
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
308-380 8.36e-05

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 41.62  E-value: 8.36e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   308 NLFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLEK 380
Cdd:COG0724   3 KIYVGNLPYSVTEEDLR----ELFSEYG-EVTSVKLitdretGRSRGFGFVEMPDDEEAQAAIEaLNGAELMGRTLKVNE 77
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
309-384 8.60e-05

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 41.31  E-value: 8.60e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   309 LFVGNLNFNKSapelKTGISDVFAK----NDLAVV-DVRIGMTRKFGYVDFESAEDLEKAL-ELTGLKVFGNEIKLEKPK 382
Cdd:cd12449   3 LFVGGLSFDTN----EQSLEEVFSKygqiSEVVVVkDRETQRSRGFGFVTFENPDDAKDAMmAMNGKSLDGRQIRVDQAG 78

                ..
gi 189306   383 GK 384
Cdd:cd12449  79 KS 80
RRM1_RBM5 cd12752
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 5 (RBM5); This subgroup ...
484-561 9.64e-05

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 5 (RBM5); This subgroup corresponds to the RRM1 of RBM5, also termed protein G15, or putative tumor suppressor LUCA15, or renal carcinoma antigen NY-REN-9, a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM5 shows high sequence similarity to RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). Both, RBM5 and RBM6, specifically bind poly(G) RNA. They contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, a nuclear localization signal, and a G-patch/D111 domain.


Pssm-ID: 410146 [Multi-domain]  Cd Length: 87  Bit Score: 41.46  E-value: 9.64e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFE-----KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKR-EIEGRAIRLEL 557
Cdd:cd12752   4 ESKTIMLRGLPINITENDIRELIEsfegpQPADVRLMKRKTGVSRGFAFVEFYHLQDATSWMEANQKKlVIQGKTIAMHY 83

                ....
gi 189306   558 QGPR 561
Cdd:cd12752  84 SNPR 87
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
574-628 9.87e-05

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 41.02  E-value: 9.87e-05
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDrETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12379   5 IFIKNLDKSIDNKALYDTFSafGNILScKVATD-ENGGSKGYGFVHFETEEAAERAIE 61
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
399-438 1.01e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 41.44  E-value: 1.01e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....
gi 189306   399 NLPYKVTQDELKEVFEDAA--EIRLV--SKDGKSKGIAYIEFKT 438
Cdd:cd12402   9 NLPYDVTEDDIEDFFRGLNisSVRLPreNGPGRLRGFGYVEFED 52
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
570-643 1.03e-04

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 41.24  E-value: 1.03e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   570 PSKTLFVKGLSEDTTEETLKES-------FDGSVRARIVTDRetgSSKGFGFVDFNSEEDAKEAMEDGE---IDGNKVTL 639
Cdd:cd12453   1 PSACLFVASLSSARSDEELCAAvtnhfskWGELLNVKVLKDW---SNRPYAFVQYTNTEDAKNALVNGHntlLDGRHLRV 77

                ....
gi 189306   640 DWAK 643
Cdd:cd12453  78 EKAK 81
RRM_PIN4_like cd12253
RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding ...
394-463 1.03e-04

RNA recognition motif (RRM) found in yeast RNA-binding protein PIN4, fission yeast RNA-binding post-transcriptional regulators cip1, cip2 and similar proteins; This subfamily corresponds to the RRM in PIN4, also termed psi inducibility protein 4 or modifier of damage tolerance Mdt1, a novel phosphothreonine (pThr)-containing protein that specifically interacts with the pThr-binding site of the Rad53 FHA1 domain. It is encoded by gene MDT1 (YBL051C) from yeast Saccharomyces cerevisiae. PIN4 is involved in normal G2/M cell cycle progression in the absence of DNA damage and functions as a novel target of checkpoint-dependent cell cycle arrest pathways. It contains an N-terminal RRM, a nuclear localization signal, a coiled coil, and a total of 15 SQ/TQ motifs. cip1 (Csx1-interacting protein 1) and cip2 (Csx1-interacting protein 2) are novel cytoplasmic RRM-containing proteins that counteract Csx1 function during oxidative stress. They are not essential for viability in fission yeast Schizosaccharomyces pombe. Both cip1 and cip2 contain one RRM. Like PIN4, Cip2 also possesses an R3H motif that may function in sequence-specific binding to single-stranded nucleic acids.


Pssm-ID: 240699 [Multi-domain]  Cd Length: 79  Bit Score: 41.28  E-value: 1.03e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12253   3 AIVIKNIPFSLRKEQLLDIIEDLGIPLPYAfnyhfDNGVFRGLAFANFRSPEEAQTVVEALNGYEISGRRLRVEY 77
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
400-457 1.09e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 41.21  E-value: 1.09e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   400 LPYKVTQDELKEVFEDAAEIR--LVSKD---GKSKGIAYIEFKTEADAEKTFEEKQGTeIDGR 457
Cdd:cd12384   8 LPYHTTDDSLREYFEQFGEIEeaVVITDrqtGKSRGYGFVTMADREAAERACKDPNPI-IDGR 69
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
572-640 1.10e-04

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 41.13  E-value: 1.10e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   572 KTLFVKGLSEDTTEETLKESF--DGSVR-ARIVTDREtGSSKGFGFVDFNSEED---AKEAMEDGEIDGNKVTLD 640
Cdd:cd12336   2 RTLFVGNLDPRVTEEILYELFlqAGPLEgVKIPKDPN-GKPKNFAFVTFKHEVSvpyAIQLLNGIRLFGREIRIK 75
RRM1_hnRNPH_GRSF1_like cd12503
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
493-549 1.15e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM1 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. Members in this family have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. They also include a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. They may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409926 [Multi-domain]  Cd Length: 77  Bit Score: 40.84  E-value: 1.15e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   493 LSYSATEETLQEVFEKATF------IKVPQNQNGKSKGYAFIEFASFEDAKEALNSCN----KREIE 549
Cdd:cd12503   7 LPWSATAEDVLNFFTDCRIkggengIHFTYTREGRPSGEAFIELESEEDVEKALEKHNehmgHRYIE 73
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
309-372 1.18e-04

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 41.06  E-value: 1.18e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   309 LFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALELTGLKVF 372
Cdd:cd12412   5 IFVGGIDWDTTEEELREFFSKFGKVKDVKIIKDRAGVSKGYGFVTFETQEDAEKIQKWGANLVF 68
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
574-617 1.18e-04

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 41.10  E-value: 1.18e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKE---SFdGSVRA-RIVTDRETGSSKGFGFVDF 617
Cdd:cd12231   3 LFIGGLPNYLNEDQVKEllqSF-GKLKAfNLVKDSATGLSKGYAFCEY 49
RRM_SCAF4_SCAF8 cd12227
RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), ...
392-468 1.40e-04

RNA recognition motif (RRM) found in SR-related and CTD-associated factor 4 (SCAF4), SR-related and CTD-associated factor 8 (SCAF8) and similar proteins; This subfamily corresponds to the RRM in a new class of SCAFs (SR-like CTD-associated factors), including SCAF4, SCAF8 and similar proteins. The biological role of SCAF4 remains unclear, but it shows high sequence similarity to SCAF8 (also termed CDC5L complex-associated protein 7, or RNA-binding motif protein 16, or CTD-binding SR-like protein RA8). SCAF8 is a nuclear matrix protein that interacts specifically with a highly serine-phosphorylated form of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II). The pol II CTD plays a role in coupling transcription and pre-mRNA processing. In addition, SCAF8 co-localizes primarily with transcription sites that are enriched in nuclear matrix fraction, which is known to contain proteins involved in pre-mRNA processing. Thus, SCAF8 may play a direct role in coupling with both, transcription and pre-mRNA processing, processes. SCAF8 and SCAF4 both contain a conserved N-terminal CTD-interacting domain (CID), an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNPs (ribonucleoprotein domain), and serine/arginine-rich motifs.


Pssm-ID: 409674 [Multi-domain]  Cd Length: 77  Bit Score: 40.88  E-value: 1.40e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   392 ARTLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDgKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTGEKG 468
Cdd:cd12227   2 STTLWVGHLSKKVTQEELKNLFEEYGEIQSIDMI-PPRGCAYVCMKTRQDAHRALQKLKNHKLRGKSIKIAWAPNKG 77
RRM_RBM7_like cd12336
RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This ...
393-461 1.46e-04

RNA recognition motif (RRM) found in RNA-binding protein 7 (RBM7) and similar proteins; This subfamily corresponds to the RRM of RBM7, RBM11 and their eukaryotic homologous. RBM7 is an ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. It interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20, and may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM11 is a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. It is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. Both, RBM7 and RBM11, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 409773 [Multi-domain]  Cd Length: 75  Bit Score: 40.75  E-value: 1.46e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVS----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12336   2 RTLFVGNLDPRVTEEILYELFLQAGPLEGVKipkdPNGKPKNFAFVTFKHEVSVPYAIQLLNGIRLFGREIRI 74
RRM_ZCRB1 cd12393
RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing ...
394-460 1.52e-04

RNA recognition motif (RRM) found in Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (ZCRB1) and similar proteins; This subfamily corresponds to the RRM of ZCRB1, also termed MADP-1, or U11/U12 small nuclear ribonucleoprotein 31 kDa protein (U11/U12 snRNP 31 or U11/U12-31K), a novel multi-functional nuclear factor, which may be involved in morphine dependence, cold/heat stress, and hepatocarcinoma. It is located in the nucleoplasm, but outside the nucleolus. ZCRB1 is one of the components of U11/U12 snRNPs that bind to U12-type pre-mRNAs and form a di-snRNP complex, simultaneously recognizing the 5' splice site and branchpoint sequence. ZCRB1 is characterized by an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a CCHC-type Zinc finger motif. In addition, it contains core nucleocapsid motifs, and Lys- and Glu-rich domains.


Pssm-ID: 409827 [Multi-domain]  Cd Length: 76  Bit Score: 40.73  E-value: 1.52e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS--KDG---KSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12393   3 TVYVSNLPFSLTNNDLHQIFSKYGKVVKVTilKDKetrKSKGVAFVLFLDRESAHNAVRAMNNKELFGRTLK 74
RRM_RBM11 cd12593
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily ...
486-556 1.53e-04

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 11 (RBM11); This subfamily corresponds to the RRM or RBM11, a novel tissue-specific splicing regulator that is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. It may play a role in the modulation of alternative splicing during neuron and germ cell differentiation. RBM11 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus. The RRM of RBM11 is responsible for RNA binding, whereas the C-terminal region permits nuclear localization and homodimerization.


Pssm-ID: 410006 [Multi-domain]  Cd Length: 75  Bit Score: 40.55  E-value: 1.53e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12593   2 RTVFVGNLHSNVNEEILYELFLQAgplTKVTIAKDKEGKPKSFGFVCFKHAESVPYAIALLNGIRLYGRPIKLQ 75
RRM_FET cd12280
RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily ...
574-637 1.64e-04

RNA recognition motif (RRM) found in the FET family of RNA-binding proteins; This subfamily corresponds to the RRM of FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA-binding proteins. This ubiquitously expressed family of similarly structured proteins predominantly localizing to the nuclear, includes FUS (also known as TLS or Pigpen or hnRNP P2), EWS (also known as EWSR1), TAF15 (also known as hTAFII68 or TAF2N or RPB56), and Drosophila Cabeza (also known as SARFH). The corresponding coding genes of these proteins are involved in deleterious genomic rearrangements with transcription factor genes in a variety of human sarcomas and acute leukemias. All FET proteins interact with each other and are therefore likely to be part of the very same protein complexes, which suggests a general bridging role for FET proteins coupling RNA transcription, processing, transport, and DNA repair. The FET proteins contain multiple copies of a degenerate hexapeptide repeat motif at the N-terminus. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a putative zinc-finger domain, and a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), which is flanked by 3 arginine-glycine-glycine (RGG) boxes. FUS and EWS might have similar sequence specificity; both bind preferentially to GGUG-containing RNAs. FUS has also been shown to bind strongly to human telomeric RNA and to small low-copy-number RNAs tethered to the promoter of cyclin D1. To date, nothing is known about the RNA binding specificity of TAF15.


Pssm-ID: 409722 [Multi-domain]  Cd Length: 82  Bit Score: 40.86  E-value: 1.64e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESF-----------DGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKV 637
Cdd:cd12280   1 IFVSGLPPDVTIDELADLFgqigiikrykdTWPPKIKIYTDKETGKPKGEATLTYEDPSAAKAAIEwfNGkEFRGNKI 78
RRM2_HRB1_GBP2 cd21606
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, ...
492-558 1.77e-04

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410185 [Multi-domain]  Cd Length: 75  Bit Score: 40.42  E-value: 1.77e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   492 NLSYSATEETLQEVFEKATFIK---VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRaiRLELQ 558
Cdd:cd21606   8 NLPYSINWQALKDMFKECGDVLradVELDYNGRSRGFGTVIYATEEEMHRAIDTFNGYELEGR--VLEVK 75
RRM2_RBM12B cd12746
RNA recognition motif 2 (RRM2) found in RNA-binding protein 12B (RBM12B) and similar proteins; ...
488-555 1.79e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 12B (RBM12B) and similar proteins; This subgroup corresponds to the RRM2 of RBM12B which contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Its biological role remains unclear.


Pssm-ID: 410140 [Multi-domain]  Cd Length: 86  Bit Score: 40.89  E-value: 1.79e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVF-----EKATFIKvpqNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRL 555
Cdd:cd12746   5 LFLRGMPYSATEDDVRNFFsglkvDGVIFLK---HPNGRNNGNGLVKFATKEDASEGL-KRHRQYMGSRFIEV 73
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
572-628 1.82e-04

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 40.29  E-value: 1.82e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12320   1 TKLIVKNVPFEATRKEIRELFSpfGQLKSVRLPKKFDGSHRGFAFVEFVTKQEAQNAME 59
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
574-629 1.84e-04

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 40.38  E-value: 1.84e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTE---ETLKESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd12652   3 LYVSGLPKTMTQkelEQLFSQFGRIITSRILCDNVTGLSRGVGFIRFDKRVEAERAIKA 61
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
395-461 1.93e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 40.54  E-value: 1.93e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   395 LLAKNLPYKVTQ-DELKEVFEDAAEIRLV----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12675   3 LIIRNLPWSIKKpVHLKKLFGRYGKVVEAtiprKKGGKLSGFAFVTMKGRKNAEEALESVNGLEIDGRPVAV 74
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
399-459 1.94e-04

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 40.36  E-value: 1.94e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVS--KD---GKSKGIAYIEFkTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12306   6 NVDYGTTPEELQAHFKSCGTINRVTilCDkftGQPKGFAYIEF-VDKSSVENALLLNESEFRGRQI 70
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
571-629 1.97e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 40.59  E-value: 1.97e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   571 SKTLFVKGLSEDTTEETLKESFDG-----SVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd21619   1 SNTIYVGNIDMTINEDALEKIFSRygqveSVRRPPIHTDKADRTTGFGFIKYTDAESAERAMQQ 64
RRM3_RBM46 cd12496
RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This ...
572-644 2.00e-04

RNA recognition motif 3 (RRM3) found in vertebrate RNA-binding protein 46 (RBM46); This subgroup corresponds to the RRM3 of RBM46, also termed cancer/testis antigen 68 (CT68), is a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM46 contains two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409919 [Multi-domain]  Cd Length: 74  Bit Score: 40.38  E-value: 2.00e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   572 KTLFVKGLSEDTTEETLKESFDgSVRARIVtdRETGSSKGFGFVDFNSEEDAKEAME---DGEIDGNKVTLDWAKP 644
Cdd:cd12496   2 KVLYVRNLMISTTEETIKAEFN-KFKPGVV--ERVKKLRDYAFVHFFNREDAVAAMSvmnGKCIDGASIEVTLAKP 74
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
574-628 2.01e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 40.30  E-value: 2.01e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12361   2 LFVGMIPKTASEEDVRPLFEqfGNIEeVQILRDKQTGQSKGCAFVTFSTREEALRAIE 59
RRM1_RBM19_MRD1 cd12315
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple ...
574-642 2.06e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM1 of RBM19 and MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409754 [Multi-domain]  Cd Length: 81  Bit Score: 40.61  E-value: 2.06e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   574 LFVKGLSEDTTEETLKESFDGSVRA--------RIVTDREtGSSKGFGFVDFNSEEDAKEAME--DGE-IDGNKVTLDWA 642
Cdd:cd12315   3 LIVKNLPLSLDEDQFRRLFSQKCKDigltitdcKLLTKSG-GVSRRFGFVGFKDEEDAQKAKEffNGTyFRTSKVTVEFS 81
RRM1_hnRNPA3 cd12763
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
572-627 2.22e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A3 which is a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 410156 [Multi-domain]  Cd Length: 81  Bit Score: 40.42  E-value: 2.22e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRARIVT-DRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12763   3 RKLFIGGLSFETTDDSLREHFEqwGTLTDCVVMrDPQTKRSRGFGFVTYSCVEEVDAAM 61
RRM2_PUF60 cd12371
RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
574-628 2.25e-04

RNA recognition motif 2 (RRM2) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM2 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409806 [Multi-domain]  Cd Length: 77  Bit Score: 40.35  E-value: 2.25e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12371   3 IYVASVHPDLSEDDIKsvfEAFGKIKSCSLAPDPETGKHKGYGFIEYENPQSAQDAIA 60
RRM1_DAZAP1 cd12574
RNA recognition motif 1 (RRM1) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
574-617 2.32e-04

RNA recognition motif 1 (RRM1) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM1 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated form is predominantly nuclear and the nonacetylated form is in cytoplasm. It also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409988 [Multi-domain]  Cd Length: 82  Bit Score: 40.40  E-value: 2.32e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFDG---SVRARIVTDRETGSSKGFGFVDF 617
Cdd:cd12574   2 LFVGGLDWSTTQETLRSYFSQygeVVDCVIMKDKTTNQSRGFGFVKF 48
RRM1_Spen cd12308
RNA recognition motif 1 (RRM1) found in the Spen (split end) protein family; This subfamily ...
485-556 2.33e-04

RNA recognition motif 1 (RRM1) found in the Spen (split end) protein family; This subfamily corresponds to the RRM1 domain in the Spen (split end) family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possesses mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also known as one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong- to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 409749 [Multi-domain]  Cd Length: 78  Bit Score: 40.30  E-value: 2.33e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   485 SKTLVLSNLSYSAT----EETLQEVFEKATFIKVPQNQNGKSKgYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12308   1 YKTLCVSNLPAKLSdeeiEDVLYHEFKKFGDVSVRLQHDGDER-VAYVNFRHPEDAREAKHAKLRLVLFDRPLNVE 75
RRM1_RBM19 cd12564
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
488-557 2.36e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM1 of RBM19, also termed RNA-binding domain-1 (RBD-1), a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409980 [Multi-domain]  Cd Length: 76  Bit Score: 39.99  E-value: 2.36e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFE---KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12564   3 LIVKNLPSSITEDRLRKLFSafgTITDVQLKYTKDGKFRRFGFVGFKSEEEAQKALKHFNNSFIDTSRITVEE 75
RRM1_hnRNPH_GRSF1_like cd12503
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
397-447 2.36e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM1 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. Members in this family have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. They also include a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. They may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409926 [Multi-domain]  Cd Length: 77  Bit Score: 40.06  E-value: 2.36e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   397 AKNLPYKVTQDELKEVFEDAaEIR--------LVSKDGKSKGIAYIEFKTEADAEKTFE 447
Cdd:cd12503   4 ARGLPWSATAEDVLNFFTDC-RIKggengihfTYTREGRPSGEAFIELESEEDVEKALE 61
RRM1_MSI cd12576
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog Musashi-1, ...
574-637 2.37e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins; This subfamily corresponds to the RRM1 in Musashi-1 and Musashi-2. Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. It is evolutionarily conserved from invertebrates to vertebrates. Musashi-1 is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). It has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, Musashi-1 represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-2 (also termed Msi2) has been identified as a regulator of the hematopoietic stem cell (HSC) compartment and of leukemic stem cells after transplantation of cells with loss and gain of function of the gene. It influences proliferation and differentiation of HSCs and myeloid progenitors, and further modulates normal hematopoiesis and promotes aggressive myeloid leukemia. Both, Musashi-1 and Musashi-2, contain two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 409990 [Multi-domain]  Cd Length: 76  Bit Score: 40.12  E-value: 2.37e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDG--EIDGNKV 637
Cdd:cd12576   2 MFIGGLSWQTTPEGLREYFSkfGEITeCMVMRDPTTKRSRGFGFVTFSDPASVDKVLAQGphELDGKKI 70
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
309-381 2.37e-04

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 40.09  E-value: 2.37e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   309 LFVGNLNFNKSAPELKTGISDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALELTGLKVFGNEIKLEKP 381
Cdd:cd12451   2 IFVKGFDASLGEDTIRDELREHFGECG-EVTNVRIptdretGELKGFAYIEFSTKEAKEKALELNGSDIAGGNLVVDEA 79
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
574-628 2.42e-04

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 40.31  E-value: 2.42e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12378   2 LYVGDLHPDVTEAMLYEKFSpaGPVLsIRVCRDAVTRRSLGYAYVNFQQPADAERALD 59
RRM1_hnRPDL cd12758
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP ...
574-643 2.42e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like or hnRNP DL) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP DL (or hnRNP D-like), also termed AU-rich element RNA-binding factor, or JKT41-binding protein (protein laAUF1 or JKTBP), which is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. hnRNP DL binds single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) in a non-sequencespecific manner, and interacts with poly(G) and poly(A) tenaciously. It contains two putative two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 410152 [Multi-domain]  Cd Length: 76  Bit Score: 39.96  E-value: 2.42e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   574 LFVKGLSEDTTEETLKE---SFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE--IDGNKVTLDWAK 643
Cdd:cd12758   2 MFIGGLSWDTSKKDLTEylsRFGEVVDCTIKTDPVTGRSRGFGFVLFKDAASVDKVLELKEhkLDGKLIDPKRAK 76
RRM2_SRSF4_like cd12600
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
395-462 2.55e-04

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM2 of three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and is essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410012 [Multi-domain]  Cd Length: 72  Bit Score: 39.75  E-value: 2.55e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLY 462
Cdd:cd12600   3 LIVENLSSRVSWQDLKDYMRQAGEVTYADAHKQRKNEGVVEFASYSDMKNAIEKLDGTELNGRKIRLV 70
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
485-553 2.57e-04

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 39.95  E-value: 2.57e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKATFIKVpQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12524   1 SRTLFVRNINSSVEDEELRALFEQFGEIRT-LYTACKHRGFIMVSYYDIRAAQSAKRALQGTELGGRKL 68
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
487-556 2.72e-04

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 39.86  E-value: 2.72e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   487 TLVLSNLSYSATEETLQEVFE---KATFIKVPQNQN-GKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12307   1 VVYIGHLPHGFYEPELRKYFSqfgTVTRLRLSRSKKtGKSKGYAFVEFEDPEVAKIVAETMNNYLLFERLLKCK 74
RRM1_hnRNPD_like cd12575
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, ...
574-631 2.74e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins; This subfamily corresponds to the RRM1 in hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this family contain two putative RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glycine- and tyrosine-rich C-terminus.


Pssm-ID: 409989 [Multi-domain]  Cd Length: 72  Bit Score: 39.85  E-value: 2.74e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   574 LFVKGLSEDTTEETLKE---SFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE 631
Cdd:cd12575   1 MFIGGLSWDTSKKDLKDyfsKFGEVVDCTIKLDPVTGRSRGFGFVLFKDAESVDKVLDQKE 61
RRM_SKAR cd12681
RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; ...
394-461 2.76e-04

RNA recognition motif (RRM) found in S6K1 Aly/REF-like target (SKAR) and similar proteins; This subgroup corresponds to the RRM of SKAR, also termed polymerase delta-interacting protein 3 (PDIP3), 46 kDa DNA polymerase delta interaction protein (PDIP46), belonging to the Aly/REF family of RNA binding proteins that have been implicated in coupling transcription with pre-mRNA splicing and nucleo-cytoplasmic mRNA transport. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion. SKAR contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410082 [Multi-domain]  Cd Length: 69  Bit Score: 39.56  E-value: 2.76e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVSKdgKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12681   2 RLTVSNLHPSVTEDDIVELFSVIGALKRARL--VRPGVAEVVYVRREDAITAIKKYNNRELDGQPMKC 67
RRM2_hnRNPA1 cd12580
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) ...
572-621 2.87e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A1, also termed helix-destabilizing protein, or single-strand RNA-binding protein, or hnRNP core protein A1, an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A1 has been characterized as a splicing silencer, often acting in opposition to an activating hnRNP H. It silences exons when bound to exonic elements in the alternatively spliced transcripts of c-src, HIV, GRIN1, and beta-tropomyosin. hnRNP A1 can shuttle between the nucleus and the cytoplasm. Thus, it may be involved in transport of cellular RNAs, including the packaging of pre-mRNA into hnRNP particles and transport of poly A+ mRNA from the nucleus to the cytoplasm. The cytoplasmic hnRNP A1 has high affinity with AU-rich elements, whereas the nuclear hnRNP A1 has high affinity with a polypyrimidine stretch bordered by AG at the 3' ends of introns. hnRNP A1 is also involved in the replication of an RNA virus, such as mouse hepatitis virus (MHV), through an interaction with the transcription-regulatory region of viral RNA. Moreover, hnRNP A1, together with the scaffold protein septin 6, serves as host proteins to form a complex with NS5b and viral RNA, and further play important roles in the replication of Hepatitis C virus (HCV). hnRNP A1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The RRMs of hnRNP A1 play an important role in silencing the exon and the glycine-rich domain is responsible for protein-protein interactions.


Pssm-ID: 409994 [Multi-domain]  Cd Length: 77  Bit Score: 39.95  E-value: 2.87e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEE 621
Cdd:cd12580   1 KKIFVGGIKEDTEEHHLRDYFEqyGKIEViEIMTDRGSGKKRGFAFVTFDDHD 53
RRM1_Nop4p cd12674
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
309-379 2.99e-04

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM1 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410075 [Multi-domain]  Cd Length: 80  Bit Score: 39.76  E-value: 2.99e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   309 LFVGNLNFNKSAPELKTGISDVF-AKNDLAVVDVRIGMTRKFGYVDFESAEDLEKAL-ELTGLKVFGNEIKLE 379
Cdd:cd12674   3 LFVRNLPFDVTLESLTDFFSDIGpVKHAVVVTDPETKKSRGYGFVSFSTHDDAEEALaKLKNRKLSGHILKLD 75
RRM2_SXL cd12651
RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
574-628 3.11e-04

RNA recognition motif 2 (RRM2) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM2 of the sex-lethal protein (SXL) which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 410054 [Multi-domain]  Cd Length: 81  Bit Score: 39.88  E-value: 3.11e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GS-VRARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12651   5 LYVTNLPRTITEDELDTIFGayGNiVQKNLLRDKLTGRPRGVAFVRYDKREEAQAAIS 62
RRM_DAZL cd12672
RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; ...
573-628 3.27e-04

RNA recognition motif (RRM) found in vertebrate deleted in azoospermia-like (DAZL) proteins; This subgroup corresponds to the RRM of DAZL, also termed SPGY-like-autosomal, encoded by the autosomal homolog of DAZ gene, DAZL. It is ancestral to the deleted in azoospermia (DAZ) protein. DAZL is germ-cell-specific RNA-binding protein that contains a RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a DAZ motif, a protein-protein interaction domain. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410073 [Multi-domain]  Cd Length: 82  Bit Score: 39.77  E-value: 3.27e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDReTGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12672   7 TVFVGGIDIRMDENEIRSFFAryGSVKeVKIITDR-TGVSKGYGFVSFYDDVDIQKIVE 64
RRM2_DAZAP1 cd12327
RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) ...
571-644 3.41e-04

RNA recognition motif 2 (RRM2) found in Deleted in azoospermia-associated protein 1 (DAZAP1) and similar proteins; This subfamily corresponds to the RRM2 of DAZAP1 or DAZ-associated protein 1, also termed proline-rich RNA binding protein (Prrp), a multi-functional ubiquitous RNA-binding protein expressed most abundantly in the testis and essential for normal cell growth, development, and spermatogenesis. DAZAP1 is a shuttling protein whose acetylated is predominantly nuclear and the nonacetylated form is in cytoplasm. DAZAP1 also functions as a translational regulator that activates translation in an mRNA-specific manner. DAZAP1 was initially identified as a binding partner of Deleted in Azoospermia (DAZ). It also interacts with numerous hnRNPs, including hnRNP U, hnRNP U like-1, hnRNPA1, hnRNPA/B, and hnRNP D, suggesting DAZAP1 might associate and cooperate with hnRNP particles to regulate adenylate-uridylate-rich elements (AU-rich element or ARE)-containing mRNAs. DAZAP1 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal proline-rich domain.


Pssm-ID: 409765 [Multi-domain]  Cd Length: 80  Bit Score: 39.79  E-value: 3.41e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEA--MEDGEIDGNKVTLDWAKP 644
Cdd:cd12327   2 SKKVFVGGIPHNCGETELRDYFKryGVVtEVVMMYDAEKQRSRGFGFITFEDEQSVDQAvnMHFHDIMGKKVEVKRAEP 80
RRM2_Nop4p cd12675
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
594-647 3.51e-04

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM2 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410076 [Multi-domain]  Cd Length: 83  Bit Score: 39.77  E-value: 3.51e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   594 GSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME---DGEIDGNKVTLDWAKPKGE 647
Cdd:cd12675  26 GKVVEATIPRKKGGKLSGFAFVTMKGRKNAEEALEsvnGLEIDGRPVAVDWAVSKNT 82
RRM1_LARP7 cd12290
RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; ...
400-444 3.54e-04

RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus.


Pssm-ID: 409732 [Multi-domain]  Cd Length: 79  Bit Score: 39.62  E-value: 3.54e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 189306   400 LPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEK 444
Cdd:cd12290   7 LPKNATHEWIEAVFSKYGEVVYVSiprykSTGDPKGFAFIEFETSESAQK 56
RRM1_RBM19_MRD1 cd12315
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple ...
395-463 3.63e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM1 of RBM19 and MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409754 [Multi-domain]  Cd Length: 81  Bit Score: 39.83  E-value: 3.63e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIR---------LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12315   3 LIVKNLPLSLDEDQFRRLFSQKCKDIgltitdcklLTKSGGVSRRFGFVGFKDEEDAQKAKEFFNGTYFRTSKVTVEF 80
RRM4_RBM28_like cd12416
RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
488-544 3.74e-04

RNA recognition motif 4 (RRM4) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM4 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409850 [Multi-domain]  Cd Length: 98  Bit Score: 40.28  E-value: 3.74e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   488 LVLSNLSYSATEETLQEVFEKA------------TFIKV-------PQNQNGKSKGYAFIEFASFEDAKEALNSCN 544
Cdd:cd12416   3 LCVRNLPKSVDDKKLKKLFLKAvkerakkkgvkiKEVKVmrdkkrlNSDGKGRSKGYGFVEFTEHEHALKALRALN 78
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
573-643 3.81e-04

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 39.58  E-value: 3.81e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   573 TLFVKGLSEDTTEETLKESF--DGSVRA-RIVTdretgsSKGFGFVDFNSEEDAKEAMEDGE----IDGNKVTLDWAK 643
Cdd:cd12224   3 TLYVGGLGDKITEKDLRDHFyqFGEIRSiTVVA------RQQCAFVQFTTRQAAERAAERTFnkliIKGRRLKVKWGR 74
RRM1_PES4_MIP6 cd21601
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 ...
399-459 3.83e-04

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein PES4, protein MIP6 and similar proteins; The family includes PES4 (also called DNA polymerase epsilon suppressor 4) and MIP6 (also called MEX67-interacting protein 6), both of which are predicted RNA binding proteins that may act as regulators of late translation, protection, and mRNA localization. MIP6 acts as a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. It interacts with MEX67. Members in this family contain four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410180 [Multi-domain]  Cd Length: 80  Bit Score: 39.64  E-value: 3.83e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFED-----AAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd21601   7 DLDKDVTEEMLRDIFSKykslvSVKICLDSETKKSLGYGYLNFSDKEDAEKAIEEFNYTPIFGKEV 72
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
310-378 3.85e-04

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 39.31  E-value: 3.85e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   310 FVGNLNFNKSAPELKtgisdVFAKNDLAVVDVRIGMTRK------FGYVDFESAEDLEKALELTGLKVFGNEIKL 378
Cdd:cd12272   3 YIGNLAWDIDEDDLR-----ELFAECCEITNVRLHTDKEtgefkgYGHVEFADEESLDAALKLAGTKLCGRPIRV 72
RRM2_SRSF4 cd12764
RNA recognition motif 2 (RRM2) found in vertebrate serine/arginine-rich splicing factor 4 ...
395-461 3.86e-04

RNA recognition motif 2 (RRM2) found in vertebrate serine/arginine-rich splicing factor 4 (SRSF4); This subgroup corresponds to the RRM2 of SRSF4, also termed pre-mRNA-splicing factor SRp75, or SRP001LB, or splicing factor, arginine/serine-rich 4 (SFRS4), a splicing regulatory serine/arginine (SR) protein that plays an important role in both constitutive splicing and alternative splicing of many pre-mRNAs. For instance, it interacts with heterogeneous nuclear ribonucleoproteins, hnRNP G and hnRNP E2, and further regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia. SFRS4 also induces production of HIV-1 vpr mRNA through the inhibition of the 5'-splice site of exon 3. In addition, SRSF4 activates splicing of the cardiac troponin T (cTNT) alternative exon by direct interactions with the cTNT exon 5 enhancer RNA. SRSF4 can shuttle between the nucleus and cytoplasm. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine-rich region, an internal region homologous to the RRM, and a very long, highly phosphorylated C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410157 [Multi-domain]  Cd Length: 97  Bit Score: 40.13  E-value: 3.86e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12764  15 LIVENLSSRCSWQDLKDYMRQAGEVTYADAHKGRKNEGVIEFVSYSDMKRALEKLDGTEVNGRKIRL 81
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
492-557 4.13e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 39.15  E-value: 4.13e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFEKATFIK---VPQNqngkSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12373   6 NLGPRVTKRELEDAFEKYGPLRnvwVARN----PPGFAFVEFEDPRDAEDAVRALDGRRICGSRVRVEL 70
RRM2_hnRNPA3 cd12582
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) ...
572-621 4.18e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A3, a novel RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE) independently of hnRNP A2 and participates in the trafficking of A2RE-containing RNA. hnRNP A3 can shuttle between the nucleus and the cytoplasm. It contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus.


Pssm-ID: 409996 [Multi-domain]  Cd Length: 80  Bit Score: 39.55  E-value: 4.18e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEE 621
Cdd:cd12582   1 KKIFVGGIKEDTEEYHLRDYFEkyGKIETiEVMEDRQSGKKRGFAFVTFDDHD 53
RRM1_RBM5_like cd12561
RNA recognition motif 1 (RRM1) found in RNA-binding protein 5 (RBM5) and similar proteins; ...
484-536 4.49e-04

RNA recognition motif 1 (RRM1) found in RNA-binding protein 5 (RBM5) and similar proteins; This subgroup corresponds to the RRM1 of RNA-binding protein 5 (RBM5 or LUCA15 or H37), RNA-binding protein 10 (RBM10 or S1-1) and similar proteins. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor; it specifically binds poly(G) RNA. RBM10, a paralog of RBM5, may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. Both, RBM5 and RBM10, contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409977 [Multi-domain]  Cd Length: 81  Bit Score: 39.27  E-value: 4.49e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEK----ATFIKVPQNQN-GKSKGYAFIEFASFEDA 536
Cdd:cd12561   1 PNNTIMLRGLPLSVTEEDIRNALVShgvqPKDVRLMRRKTtGASRGFAFVEFMSLEEA 58
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
308-365 4.51e-04

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 39.46  E-value: 4.51e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   308 NLFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRIGMTRK------FGYVDFESAEDLEKALE 365
Cdd:cd21608   1 KLYVGNLSWDTTEDDLR----DLFSEFG-EVESAKVITDREtgrsrgFGFVTFSTAEAAEAAID 59
RRM_Aly_REF_like cd12418
RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM ...
573-634 4.59e-04

RNA recognition motif (RRM) found in the Aly/REF family; This subfamily corresponds to the RRM of Aly/REF family which includes THO complex subunit 4 (THOC4, also termed Aly/REF), S6K1 Aly/REF-like target (SKAR, also termed PDIP3 or PDIP46) and similar proteins. THOC4 is an mRNA transporter protein with a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It is involved in RNA transportation from the nucleus, and was initially identified as a transcription coactivator of LEF-1 and AML-1 for the TCRalpha enhancer function. In addition, THOC4 specifically binds to rhesus (RH) promoter in erythroid, and might be a novel transcription cofactor for erythroid-specific genes. SKAR shows high sequence homology with THOC4 and possesses one RRM as well. SKAR is widely expressed and localizes to the nucleus. It may be a critical player in the function of S6K1 in cell and organism growth control by binding the activated, hyperphosphorylated form of S6K1 but not S6K2. Furthermore, SKAR functions as a protein partner of the p50 subunit of DNA polymerase delta. In addition, SKAR may have particular importance in pancreatic beta cell size determination and insulin secretion.


Pssm-ID: 409852 [Multi-domain]  Cd Length: 75  Bit Score: 39.10  E-value: 4.59e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDReTGSSKGFGFVDFNSEEDAKEAME--DG-EIDG 634
Cdd:cd12418   2 RVRVSNLHPDVTEEDLRELFGrvGPVkSVKINYDR-SGRSTGTAYVVFERPEDAEKAIKqfDGvLLDG 68
RRM1_hnRNPM_like cd12385
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
489-553 4.62e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM1 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409819 [Multi-domain]  Cd Length: 76  Bit Score: 39.32  E-value: 4.62e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   489 VLSNLSYSATEETLQEVFEK----ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12385   3 FISNIPYDYKWQDLKDLFREkvgeVTYVELFKDENGKSRGCGIVEFKDLESVQKALETMNRYELKGRKL 71
RRM2_PUB1 cd12619
RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated ...
307-368 4.68e-04

RNA recognition motif 2 (RRM2) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM2 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA). However, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410031 [Multi-domain]  Cd Length: 80  Bit Score: 39.40  E-value: 4.68e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   307 FNLFVGNLNFNKSAPELKTGISDVFAKNDLAVV-DVRIGMTRKFGYVDFESAEDLEKAL-ELTG 368
Cdd:cd12619   2 FNIFVGDLSPEVTDAALFNAFSDFPSCSDARVMwDQKTGRSRGYGFVSFRSQQDAQNAInSMNG 65
RRM3_ACF cd12498
RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This ...
572-644 4.78e-04

RNA recognition motif 3 (RRM3) found in vertebrate APOBEC-1 complementation factor (ACF); This subgroup corresponds to the RRM3 of ACF, also termed APOBEC-1-stimulating protein, an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone and play a key role in cell growth and differentiation. ACF shuttles between the cytoplasm and nucleus. ACF contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which display high affinity for an 11 nucleotide AU-rich mooring sequence 3' of the edited cytidine in apoB mRNA. All three RRMs may be required for complementation of editing activity in living cells. RRM2/3 are implicated in ACF interaction with APOBEC-1.


Pssm-ID: 409921 [Multi-domain]  Cd Length: 83  Bit Score: 39.52  E-value: 4.78e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   572 KTLFVKGLSEDTTEETLKESFD----GSV-RARIVTDretgsskgFGFVDFNSEEDAKEAME--DGE-IDGNKVTLDWAK 643
Cdd:cd12498   9 KILYVRNLMLSTTEETIEKEFSnikpGAVeRVKKIRD--------YAFVHFYNREDAVNAMNalNGKvIDGSPIEVTLAK 80

                .
gi 189306   644 P 644
Cdd:cd12498  81 P 81
RRM3_hnRNPQ cd12495
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q ...
486-560 4.82e-04

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein Q (hnRNP Q); This subgroup corresponds to the RRM3 of hnRNP Q, also termed glycine- and tyrosine-rich RNA-binding protein (GRY-RBP), or NS1-associated protein 1 (NASP1), or synaptotagmin-binding, cytoplasmic RNA-interacting protein (SYNCRIP). It is a ubiquitously expressed nuclear RNA-binding protein identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome. As an alternatively spliced version of NSAP, it acts as an interaction partner of a multifunctional protein required for viral replication, and is implicated in the regulation of specific mRNA transport. hnRNP Q has also been identified as SYNCRIP that is a dual functional protein participating in both viral RNA replication and translation. As a synaptotagmin-binding protein, hnRNP Q plays a putative role in organelle-based mRNA transport along the cytoskeleton. Moreover, hnRNP Q has been found in protein complexes involved in translationally coupled mRNA turnover and mRNA splicing. It functions as a wild-type survival motor neuron (SMN)-binding protein that may participate in pre-mRNA splicing and modulate mRNA transport along microtubuli. hnRNP Q contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; hnRNP Q binds RNA through its RRM domains.


Pssm-ID: 409918 [Multi-domain]  Cd Length: 72  Bit Score: 39.20  E-value: 4.82e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   486 KTLVLSNLSYSATEETLQEVFekATFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12495   2 KVLFVRNLANTVTEEILEKAF--SQFGKLERVK--KLKDYAFIHFDERDGAVKAMDEMNGKDLEGENIEIVFAKP 72
RRM1_MEI2_EAR1_like cd12275
RNA recognition motif 1 (RRM1) found in Mei2-like proteins and terminal EAR1-like proteins; ...
392-452 5.11e-04

RNA recognition motif 1 (RRM1) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM1 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding protein family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 240721 [Multi-domain]  Cd Length: 71  Bit Score: 39.08  E-value: 5.11e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   392 ARTLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGT 452
Cdd:cd12275   1 SRSLFVINVPRDVTESTLRRLFEVYGDVRGVQTERISEGIVTVHFYDIRDAKRAVRELCGR 61
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
488-561 5.28e-04

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 38.89  E-value: 5.28e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFikVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPR 561
Cdd:cd12358   1 LYIGNLSSDVNESDLRQLFEEHKI--PVSSVLVKKGGYAFVDCPDQSWADKAIEKLNGKILQGKVIEVEHSVPK 72
RRM1_hnRNPD cd12756
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) ...
574-640 5.55e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP D0, also termed AU-rich element RNA-binding protein 1, which is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP D0 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), in the middle and an RGG box rich in glycine and arginine residues in the C-terminal part. Each of RRMs can bind solely to the UUAG sequence specifically.


Pssm-ID: 410150 [Multi-domain]  Cd Length: 74  Bit Score: 39.21  E-value: 5.55e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   574 LFVKGLSEDTTEETLKESFDG---SVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGEIDGNKVTLD 640
Cdd:cd12756   1 MFIGGLSWDTTKKDLKDYFSKfgeVVDCTLKLDPITGRSRGFGFVLFKESESVDKVMDQKEHKLNGKVID 70
RRM3_hnRNPM_like cd12387
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
492-553 5.64e-04

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM3 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409821 [Multi-domain]  Cd Length: 71  Bit Score: 38.72  E-value: 5.64e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   492 NLSYSATEETLQEVFEK---ATFIKVpQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12387   5 NLPFDYTWQKLKDKFKDcghVTFASI-KMENGKSKGCGTVRFDSPEDAENACRMMNGSKQSGREI 68
RRM_SRSF10 cd12559
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 10 (SRSF10) and ...
485-565 5.69e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 10 (SRSF10) and similar proteins; This subgroup corresponds to the RRM of SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). SRSF10 is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. It contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 409975 [Multi-domain]  Cd Length: 95  Bit Score: 39.66  E-value: 5.69e-04
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQ-NGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL-QG 559
Cdd:cd12559   5 NTSLFVRNVADDTRSEDLRREFGRygpIVDVYVPLDFyTRRPRGFAYVQFEDVRDAEDALHNLDRKWICGRQIEIQFaQG 84

                ....*.
gi 189306   560 PRGSPN 565
Cdd:cd12559  85 DRKTPN 90
RRM1_hnRNPR_like cd12249
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) ...
499-548 5.79e-04

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein R (hnRNP R) and similar proteins; This subfamily corresponds to the RRM1 in hnRNP R, hnRNP Q, APOBEC-1 complementation factor (ACF), and dead end protein homolog 1 (DND1). hnRNP R is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. It has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. hnRNP Q is also a ubiquitously expressed nuclear RNA-binding protein. It has been identified as a component of the spliceosome complex, as well as a component of the apobec-1 editosome, and has been implicated in the regulation of specific mRNA transport. ACF is an RNA-binding subunit of a core complex that interacts with apoB mRNA to facilitate C to U RNA editing. It may also act as an apoB mRNA recognition factor and chaperone, and play a key role in cell growth and differentiation. DND1 is essential for maintaining viable germ cells in vertebrates. It interacts with the 3'-untranslated region (3'-UTR) of multiple messenger RNAs (mRNAs) and prevents micro-RNA (miRNA) mediated repression of mRNA. This family also includes two functionally unknown RNA-binding proteins, RBM46 and RBM47. All members in this family, except for DND1, contain three conserved RNA recognition motifs (RRMs); DND1 harbors only two RRMs.


Pssm-ID: 409695 [Multi-domain]  Cd Length: 78  Bit Score: 39.11  E-value: 5.79e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   499 EETLQEVFEKATFI---KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREI 548
Cdd:cd12249  15 EDELVPLFEKCGKIyelRLMMDFSGLNRGYAFVTYTNKEAAQRAVKTLNNYEI 67
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
395-459 5.84e-04

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 38.82  E-value: 5.84e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVSKDgKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12332   4 LFVGNLPNDITEEEFKELFQKYGEVSEVFLN-KGKGFGFIRLDTRANAEAAKAELDGTPRKGRQL 67
RBD_RRM1_NPL3 cd12340
RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; ...
574-629 6.05e-04

RNA recognition motif 1 (RRM1) found in yeast nucleolar protein 3 (Npl3p) and similar proteins; This subfamily corresponds to the RRM1 of Npl3p, also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. Npl3p is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein containing two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409777 [Multi-domain]  Cd Length: 69  Bit Score: 38.92  E-value: 6.05e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDRetgsskGFGFVDFNSEEDAKEAMED 629
Cdd:cd12340   2 LFVRPFPPDTSESAIREIFSpyGPVkEVKMLSDS------NFAFVEFEELEDAIRAKDS 54
RRM1_I_PABPs cd12378
RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily ...
488-555 6.19e-04

RNA recognition motif 1 (RRM1) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM1 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammals, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409812 [Multi-domain]  Cd Length: 80  Bit Score: 39.15  E-value: 6.19e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   488 LVLSNLSYSATEETLQEVFEKA---TFIKVPQNQNG-KSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12378   2 LYVGDLHPDVTEAMLYEKFSPAgpvLSIRVCRDAVTrRSLGYAYVNFQQPADAERALDTLNFDVIKGKPIRI 73
RRM2_SREK1 cd12260
RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 ...
393-464 6.20e-04

RNA recognition motif 2 (RRM2) found in splicing regulatory glutamine/lysine-rich protein 1 (SREK1) and similar proteins; This subfamily corresponds to the RRM2 of SREK1, also termed serine/arginine-rich-splicing regulatory protein 86-kDa (SRrp86), or splicing factor arginine/serine-rich 12 (SFRS12), or splicing regulatory protein 508 amino acid (SRrp508). SREK1 belongs to a family of proteins containing regions rich in serine-arginine dipeptides (SR proteins family), which is involved in bridge-complex formation and splicing by mediating protein-protein interactions across either introns or exons. It is a unique SR family member and it may play a crucial role in determining tissue specific patterns of alternative splicing. SREK1 can alter splice site selection by both positively and negatively modulating the activity of other SR proteins. For instance, SREK1 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. In addition, SREK1 contains two (some contain only one) RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and two serine-arginine (SR)-rich domains (SR domains) separated by an unusual glutamic acid-lysine (EK) rich region. The RRM and SR domains are highly conserved among other members of the SR superfamily. However, the EK domain is unique to SREK1. It plays a modulatory role controlling SR domain function by involvement in the inhibition of both constitutive and alternative splicing and in the selection of splice-site.


Pssm-ID: 409705 [Multi-domain]  Cd Length: 85  Bit Score: 39.21  E-value: 6.20e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEI---RLVSKDGKSKGIAYIEFkTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12260   5 RTVYVGNLDPSTTADQLLEFFSQAGEVkyvRMAGDETQPTRYAFVEF-AEQTSVINALKLNGKMFGGRPLKVNHS 78
RRM2_RBM45 cd12367
RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
582-645 6.38e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM2 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409802 [Multi-domain]  Cd Length: 74  Bit Score: 38.90  E-value: 6.38e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   582 DTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGEIDGNKVtldWAKPK 645
Cdd:cd12367  11 SYTEEDLREKFKefGDIEyCSIVKDKNTGESKGFGYVKFLKPSQAALAIENCDRSFKAV---LAEPK 74
RRM_RBMX_like cd12382
RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y ...
488-556 6.63e-04

RNA recognition motif (RRM) found in heterogeneous nuclear ribonucleoprotein G (hnRNP G), Y chromosome RNA recognition motif 1 (hRBMY), testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) and similar proteins; This subfamily corresponds to the RRM domain of hnRNP G, also termed glycoprotein p43 or RBMX, an RNA-binding motif protein located on the X chromosome. It is expressed ubiquitously and has been implicated in the splicing control of several pre-mRNAs. Moreover, hnRNP G may function as a regulator of transcription for SREBP-1c and GnRH1. Research has shown that hnRNP G may also act as a tumor-suppressor since it upregulates the Txnip gene and promotes the fidelity of DNA end-joining activity. In addition, hnRNP G appears to play a critical role in proper neural development of zebrafish and frog embryos. The family also includes several paralogs of hnRNP G, such as hRBMY and hnRNP G-T (also termed RNA-binding motif protein, X-linked-like-2). Both, hRBMY and hnRNP G-T, are exclusively expressed in testis and critical for male fertility. Like hnRNP G, hRBMY and hnRNP G-T interact with factors implicated in the regulation of pre-mRNA splicing, such as hTra2-beta1 and T-STAR. Although members in this family share a high conserved N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), they appear to recognize different RNA targets. For instance, hRBMY interacts specifically with a stem-loop structure in which the loop is formed by the sequence CA/UCAA. In contrast, hnRNP G associates with single stranded RNA sequences containing a CCA/C motif. In addition to the RRM, hnRNP G contains a nascent transcripts targeting domain (NTD) in the middle region and a novel auxiliary RNA-binding domain (RBD) in its C-terminal region. The C-terminal RBD exhibits distinct RNA binding specificity, and would play a critical role in the regulation of alternative splicing by hnRNP G.


Pssm-ID: 409816 [Multi-domain]  Cd Length: 80  Bit Score: 38.93  E-value: 6.63e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   488 LVLSNLSYSATEETLQEVFEK----ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12382   4 LFIGGLNTETNEKALEAVFGKygriVEVLLMKDRETNKSRGFAFVTFESPADAKDAARDMNGKELDGKAIKVE 76
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
492-553 6.66e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 38.82  E-value: 6.66e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   492 NLSYSATEETLQEVFEKATFIKVPQ-------NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12355   6 NLDPRLTEYHLLKLLSKYGKIKKFDflfhktgPLKGQPRGYCFVTFETKEEAEKAIECLNGKLALGKKL 74
RRM1_RBMS3 cd12472
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, ...
569-634 6.86e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding motif, single-stranded-interacting protein 3 (RBMS3); This subgroup corresponds to the RRM1 of RBMS3, a new member of the c-myc gene single-strand binding proteins (MSSP) family of DNA regulators. Unlike other MSSP proteins, RBMS3 is not a transcriptional regulator. It binds with high affinity to A/U-rich stretches of RNA, and to A/T-rich DNA sequences, and functions as a regulator of cytoplasmic activity. RBMS3 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and its C-terminal region is acidic and enriched in prolines, glutamines and threonines.


Pssm-ID: 409902 [Multi-domain]  Cd Length: 80  Bit Score: 39.03  E-value: 6.86e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   569 QPSKT-LFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGEIDG 634
Cdd:cd12472   1 QLSKTnLYIRGLPPGTTDQDLIklcQPYGKIVSTKAILDKNTNQCKGYGFVDFDSPAAAQKAVASLKASG 70
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
394-464 6.89e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 38.89  E-value: 6.89e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12312   2 SLFVRNVADDTRPDDLRREFGRYGPIVDVYipldfYTRRPRGFAYIQFEDVRDAEDALYYLDRTRFLGREIEIQFA 77
RRM_RBM24_RBM38_like cd12384
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar ...
493-551 7.05e-04

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein RBM24, RBM38 and similar proteins; This subfamily corresponds to the RRM of RBM24 and RBM38 from vertebrate, SUPpressor family member SUP-12 from Caenorhabditis elegans and similar proteins. Both, RBM24 and RBM38, are preferentially expressed in cardiac and skeletal muscle tissues. They regulate myogenic differentiation by controlling the cell cycle in a p21-dependent or -independent manner. RBM24, also termed RNA-binding region-containing protein 6, interacts with the 3'-untranslated region (UTR) of myogenin mRNA and regulates its stability in C2C12 cells. RBM38, also termed CLL-associated antigen KW-5, or HSRNASEB, or RNA-binding region-containing protein 1(RNPC1), or ssDNA-binding protein SEB4, is a direct target of the p53 family. It is required for maintaining the stability of the basal and stress-induced p21 mRNA by binding to their 3'-UTRs. It also binds the AU-/U-rich elements in p63 3'-UTR and regulates p63 mRNA stability and activity. SUP-12 is a novel tissue-specific splicing factor that controls muscle-specific splicing of the ADF/cofilin pre-mRNA in C. elegans. All family members contain a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409818 [Multi-domain]  Cd Length: 76  Bit Score: 38.89  E-value: 7.05e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   493 LSYSATEETLQEVFEK------ATFIKvpQNQNGKSKGYAFIEFASFEDAKEALNSCNKReIEGR 551
Cdd:cd12384   8 LPYHTTDDSLREYFEQfgeieeAVVIT--DRQTGKSRGYGFVTMADREAAERACKDPNPI-IDGR 69
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
485-556 7.20e-04

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 38.93  E-value: 7.20e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   485 SKTLVLSNLSYSATEETLQ----EVFEK---ATFIKVPQNQNGKSkgYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12453   2 SACLFVASLSSARSDEELCaavtNHFSKwgeLLNVKVLKDWSNRP--YAFVQYTNTEDAKNALVNGHNTLLDGRHLRVE 78
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
488-554 7.67e-04

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 38.54  E-value: 7.67e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIR 554
Cdd:cd12375   2 LIVNYLPQSMTQEELRSLFGAIGPIEscklVRDKITGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRLK 72
RRM_SRSF3_like cd12373
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and ...
399-460 8.05e-04

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 3 (SRSF3) and similar proteins; This subfamily corresponds to the RRM of two serine/arginine (SR) proteins, serine/arginine-rich splicing factor 3 (SRSF3) and serine/arginine-rich splicing factor 7 (SRSF7). SRSF3, also termed pre-mRNA-splicing factor SRp20, modulates alternative splicing by interacting with RNA cis-elements in a concentration- and cell differentiation-dependent manner. It is also involved in termination of transcription, alternative RNA polyadenylation, RNA export, and protein translation. SRSF3 is critical for cell proliferation, and tumor induction and maintenance. It can shuttle between the nucleus and cytoplasm. SRSF7, also termed splicing factor 9G8, plays a crucial role in both constitutive splicing and alternative splicing of many pre-mRNAs. Its localization and functions are tightly regulated by phosphorylation. SRSF7 is predominantly present in the nuclear and can shuttle between nucleus and cytoplasm. It cooperates with the export protein, Tap/NXF1, helps mRNA export to the cytoplasm, and enhances the expression of unspliced mRNA. Moreover, SRSF7 inhibits tau E10 inclusion through directly interacting with the proximal downstream intron of E10, a clustering region for frontotemporal dementia with Parkinsonism (FTDP) mutations. Both SRSF3 and SRSF7 contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal RS domain rich in serine-arginine dipeptides. The RRM domain is involved in RNA binding, and the RS domain has been implicated in protein shuttling and protein-protein interactions.


Pssm-ID: 409808 [Multi-domain]  Cd Length: 73  Bit Score: 38.38  E-value: 8.05e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12373   6 NLGPRVTKRELEDAFEKYGPLRNVWVARNPPGFAFVEFEDPRDAEDAVRALDGRRICGSRVR 67
RRM2_MEI2_EAR1_like cd12276
RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; ...
394-461 8.23e-04

RNA recognition motif 2 (RRM2) found in Mei2-like proteins and terminal EAR1-like proteins; This subfamily corresponds to the RRM2 of Mei2-like proteins from plant and fungi, terminal EAR1-like proteins from plant, and other eukaryotic homologs. Mei2-like proteins represent an ancient eukaryotic RNA-binding proteins family whose corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. In the fission yeast Schizosaccharomyces pombe, the Mei2 protein is an essential component of the switch from mitotic to meiotic growth. S. pombe Mei2 stimulates meiosis in the nucleus upon binding a specific non-coding RNA. The terminal EAR1-like protein 1 and 2 (TEL1 and TEL2) are mainly found in land plants. They may play a role in the regulation of leaf initiation. All members in this family are putative RNA-binding proteins carrying three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). In addition to the RRMs, the terminal EAR1-like proteins also contain TEL characteristic motifs that allow sequence and putative functional discrimination between them and Mei2-like proteins.


Pssm-ID: 409718 [Multi-domain]  Cd Length: 71  Bit Score: 38.39  E-value: 8.23e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12276   3 TLLVFNLDAPVSNDELKSLFSKFGEIKEIRPTPDKPSQKFVEFYDVRDAEAALDGLNGRELLGGKLKV 70
RRM_NOL8 cd12226
RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This ...
574-643 8.36e-04

RNA recognition motif (RRM) found in nucleolar protein 8 (NOL8) and similar proteins; This model corresponds to the RRM of NOL8 (also termed Nop132) encoded by a novel NOL8 gene that is up-regulated in the majority of diffuse-type, but not intestinal-type, gastric cancers. Thus, NOL8 may be a good molecular target for treatment of diffuse-type gastric cancer. Also, NOL8 is a phosphorylated protein that contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), suggesting NOL8 is likely to function as a novel RNA-binding protein. It may be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells.


Pssm-ID: 409673 [Multi-domain]  Cd Length: 77  Bit Score: 38.71  E-value: 8.36e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDReTGSSKGFGFVDFNSEEDA----KEAMEDGEIDGNKVTLDWAK 643
Cdd:cd12226   2 LFVGGLSPSITEDDLERRFSrfGTVSDvEIIRKK-DAPDRGFAYIDLRTSEAAlqkcLSTLNGVKWKGSRLKIQLAK 77
RRM2_hnRNPAB cd12584
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) ...
569-628 8.51e-04

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) and similar proteins; This subgroup corresponds to the RRM2 of hnRNP A/B, also termed APOBEC1-binding protein 1 (ABBP-1), an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP A/B contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long C-terminal glycine-rich domain that contains a potential ATP/GTP binding loop.


Pssm-ID: 409997 [Multi-domain]  Cd Length: 80  Bit Score: 38.77  E-value: 8.51e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   569 QPSKTLFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12584   2 DPVKKIFVGGLNPETTEEKIREYFGefGEIEAiELPMDPKTNKRRGFVFITFKEEDPVKKILE 64
RRM_G3BP cd12229
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, ...
571-629 8.62e-04

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, G3BP2 and similar proteins; This subfamily corresponds to the RRM domain in the G3BP family of RNA-binding and SH3 domain-binding proteins. G3BP acts at the level of RNA metabolism in response to cell signaling, possibly as RNA transcript stabilizing factors or an RNase. Members include G3BP1, G3BP2 and similar proteins. These proteins associate directly with the SH3 domain of GTPase-activating protein (GAP), which functions as an inhibitor of Ras. They all contain an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing PXXP motif(s), an RNA recognition motif (RRM), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif).


Pssm-ID: 409676 [Multi-domain]  Cd Length: 81  Bit Score: 38.55  E-value: 8.62e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   571 SKTLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAMED 629
Cdd:cd12229   3 NHQLFVGNLPHDITEDELKEFFSrfGNVlELRINSKGGGGRLPNFGFVVFDDPEAVQKILAN 64
RRM2_NUCLs cd12451
RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This ...
491-557 8.90e-04

RNA recognition motif 2 (RRM2) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM2 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409885 [Multi-domain]  Cd Length: 79  Bit Score: 38.55  E-value: 8.90e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   491 SNLSYSATEETLQEVFEK---ATFIKVPQN-QNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLEL 557
Cdd:cd12451   9 ASLGEDTIRDELREHFGEcgeVTNVRIPTDrETGELKGFAYIEFSTKEAKEKAL-ELNGSDIAGGNLVVDE 78
RRM2_HRB1_GBP2 cd21606
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, ...
574-635 9.30e-04

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410185 [Multi-domain]  Cd Length: 75  Bit Score: 38.50  E-value: 9.30e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSV-RARIVTDReTGSSKGFGFVDFNSEEDAKEAME--DG-EIDGN 635
Cdd:cd21606   4 VFIANLPYSINWQALKDMFKecGDVlRADVELDY-NGRSRGFGTVIYATEEEMHRAIDtfNGyELEGR 70
RRM1_RBM39_like cd12283
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar ...
337-377 9.33e-04

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 39 (RBM39) and similar proteins; This subfamily corresponds to the RRM1 of RNA-binding protein 39 (RBM39), RNA-binding protein 23 (RBM23) and similar proteins. RBM39 (also termed HCC1) is a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409725 [Multi-domain]  Cd Length: 73  Bit Score: 38.37  E-value: 9.33e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 189306   337 AVVDVRIGMTRK------FGYVDFESAEDLEKALELTGLKVFGNEIK 377
Cdd:cd12283  25 KVRDVRLIMDRNsrrskgVAYVEFYDVESVPLALALTGQRLLGQPIM 71
RRM2_HuB cd12775
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup ...
574-628 9.43e-04

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM2 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. It is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410168 [Multi-domain]  Cd Length: 84  Bit Score: 38.55  E-value: 9.43e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFDGSVR---ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12775   8 LYVSGLPKTMTQKELEQLFSQYGRiitSRILVDQVTGVSRGVGFIRFDKRIEAEEAIK 65
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
310-366 9.49e-04

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 38.36  E-value: 9.49e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   310 FVGNLNFnkSAPELKtgISDVFAKNDlAVVDVRI-----GMTRKFGYVDFESAEDLEKALEL 366
Cdd:cd12391   3 FVSNLDY--SVPEDK--IREIFSGCG-EITDVRLvknykGKSKGYCYVEFKDEESAQKALKL 59
RRM_AtNSRA_like cd21618
RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein ...
569-640 9.52e-04

RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein A (AtNSRA) and similar protein; AtNSRA is an alternative splicing (AS) regulator that binds to specific mRNAs and modulates auxin effects on the transcriptome. It can be displaced from its targets upon binding to AS competitor long non-coding RNA (ASCO-RNA). Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410197 [Multi-domain]  Cd Length: 87  Bit Score: 38.78  E-value: 9.52e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   569 QPSKTLFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKG-FGFVDFNSEEDAKEAMEDgeIDGNKVTLD 640
Cdd:cd21618   1 DASSTLYVEGLPLDATEREVAhifRPFPGFKSVRLVPKEGKRGRKLvLCFVDFADAQQAAAALET--LQGYRLDED 74
RRM3_RBM19 cd12567
RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
395-461 9.56e-04

RNA recognition motif 3 (RRM3) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM3 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409983 [Multi-domain]  Cd Length: 79  Bit Score: 38.53  E-value: 9.56e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   395 LLAKNLPYKVTQDELKEVFED---AAEIRLV--SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12567   5 LFVRNLPYTCTEEDLEKLFSKygpLSEVHFPidSLTKKPKGFAFVTYMIPEHAVKAYAELDGTVFQGRLLHL 76
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
394-459 9.61e-04

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 38.15  E-value: 9.61e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLV--SKD---GKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSI 459
Cdd:cd12272   1 TVYIGNLAWDIDEDDLRELFAECCEITNVrlHTDketGEFKGYGHVEFADEESLDAAL-KLAGTKLCGRPI 70
RRM2_SRSF1_4_like cd12339
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and ...
576-639 9.63e-04

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor SRSF1, SRSF4 and similar proteins; This subfamily corresponds to the RRM2 of several serine/arginine (SR) proteins that have been classified into two subgroups. The first subgroup consists of serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS) and serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). The second subgroup is composed of serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C) and plant pre-mRNA-splicing factor SF2 (SR1). These SR proteins are mainly involved in regulating constitutive and alternative pre-mRNA splicing. They also have been implicated in transcription, genomic stability, mRNA export and translation. All SR proteins in this family, except SRSF5, undergo nucleocytoplasmic shuttling, suggesting their widespread roles in gene expression. These SR proteins share a common domain architecture comprising two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides. Both domains can directly contact with RNA. The RRMs appear to determine the binding specificity and the SR domain also mediates protein-protein interactions. In addition, this subfamily includes the yeast nucleolar protein 3 (Npl3p), also termed mitochondrial targeting suppressor 1 protein, or nuclear polyadenylated RNA-binding protein 1. It is a major yeast RNA-binding protein that competes with 3'-end processing factors, such as Rna15, for binding to the nascent RNA, protecting the transcript from premature termination and coordinating transcription termination and the packaging of the fully processed transcript for export. It specifically recognizes a class of G/U-rich RNAs. Npl3p is a multi-domain protein with two RRMs, separated by a short linker and a C-terminal domain rich in glycine, arginine and serine residues.


Pssm-ID: 409776 [Multi-domain]  Cd Length: 70  Bit Score: 38.34  E-value: 9.63e-04
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   576 VKGLSEDTTEETLKESF--DGSVR-ARIVTDREtgsskGFGFVDFNSEEDAKEAME--DG-EIDGNKVTL 639
Cdd:cd12339   5 VSNLPERASWQDLKDFMrkAGEVTyADVHRDRE-----GEGVVEFTSEEDMKRAIEklDGtEFNGRRIRV 69
RRM_PPIL4 cd12235
RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and ...
404-459 1.01e-03

RNA recognition motif (RRM) found in peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) and similar proteins; This subfamily corresponds to the RRM of PPIase, also termed cyclophilin-like protein PPIL4, or rotamase PPIL4, a novel nuclear RNA-binding protein encoded by cyclophilin-like PPIL4 gene. The precise role of PPIase remains unclear. PPIase contains a conserved N-terminal peptidyl-prolyl cistrans isomerase (PPIase) motif, a central RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a lysine rich domain, and a pair of bipartite nuclear targeting sequences (NLS) at the C-terminus.


Pssm-ID: 409681 [Multi-domain]  Cd Length: 83  Bit Score: 38.41  E-value: 1.01e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   404 VTQDE-LKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12235  14 VTTDEdLEIIFSRFGKIKSCevirdKKTGDSLQYAFIEFETKESCEEAYFKMDNVLIDDRRI 75
RRM2_HuD cd12774
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup ...
574-628 1.01e-03

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen D (HuD); This subgroup corresponds to the RRM2 of HuD, also termed ELAV-like protein 4 (ELAV-4), or paraneoplastic encephalomyelitis antigen HuD, one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuD has been implicated in various aspects of neuronal function, such as the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. HuD also functions as an important regulator of mRNA expression in neurons by interacting with AU-rich RNA element (ARE) and stabilizing multiple transcripts. Moreover, HuD regulates the nuclear processing/stability of N-myc pre-mRNA in neuroblastoma cells and also regulates the neurite elongation and morphological differentiation. HuD specifically binds poly(A) RNA. Like other Hu proteins, HuD contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410167 [Multi-domain]  Cd Length: 84  Bit Score: 38.55  E-value: 1.01e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFDGSVR---ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12774   8 LYVSGLPKTMTQKELEQLFSQYGRiitSRILVDQVTGVSRGVGFIRFDKRIEAEEAIK 65
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
523-556 1.02e-03

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 38.19  E-value: 1.02e-03
                        10        20        30
                ....*....|....*....|....*....|....
gi 189306   523 KGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12233  34 KTFAFVEFEDSEDATKALEALHGSRIDGSVLTVE 67
RRM_FOX1_like cd12407
RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar ...
486-553 1.06e-03

RNA recognition motif (RRM) found in vertebrate RNA binding protein fox-1 homologs and similar proteins; This subfamily corresponds to the RRM of several tissue-specific alternative splicing isoforms of vertebrate RNA binding protein Fox-1 homologs, which show high sequence similarity to the Caenorhabditis elegans feminizing locus on X (Fox-1) gene encoding Fox-1 protein. RNA binding protein Fox-1 homolog 1 (RBFOX1), also termed ataxin-2-binding protein 1 (A2BP1), or Fox-1 homolog A, or hexaribonucleotide-binding protein 1 (HRNBP1), is predominantly expressed in neurons, skeletal muscle and heart. It regulates alternative splicing of tissue-specific exons by binding to UGCAUG elements. Moreover, RBFOX1 binds to the C-terminus of ataxin-2 and forms an ataxin-2/A2BP1 complex involved in RNA processing. RNA binding protein fox-1 homolog 2 (RBFOX2), also termed Fox-1 homolog B, or hexaribonucleotide-binding protein 2 (HRNBP2), or RNA-binding motif protein 9 (RBM9), or repressor of tamoxifen transcriptional activity, is expressed in ovary, whole embryo, and human embryonic cell lines in addition to neurons and muscle. RBFOX2 activates splicing of neuron-specific exons through binding to downstream UGCAUG elements. RBFOX2 also functions as a repressor of tamoxifen activation of the estrogen receptor. RNA binding protein Fox-1 homolog 3 (RBFOX3 or NeuN or HRNBP3), also termed Fox-1 homolog C, is a nuclear RNA-binding protein that regulates alternative splicing of the RBFOX2 pre-mRNA, producing a message encoding a dominant negative form of the RBFOX2 protein. Its message is detected exclusively in post-mitotic regions of embryonic brain. Like RBFOX1, both RBFOX2 and RBFOX3 bind to the hexanucleotide UGCAUG elements and modulate brain and muscle-specific splicing of exon EIIIB of fibronectin, exon N1 of c-src, and calcitonin/CGRP. Members in this family also harbor one RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409841 [Multi-domain]  Cd Length: 76  Bit Score: 38.15  E-value: 1.06e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFI---KVPQNQNGkSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12407   1 KRLHVSNIPFRFRDPDLRQMFGQFGTIldvEIIFNERG-SKGFGFVTFANSADADRAREKLNGTVVEGRKI 70
RRM3_Hu cd12377
RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to ...
573-637 1.07e-03

RNA recognition motif 3 (RRM3) found in the Hu proteins family; This subfamily corresponds to the RRM3 of the Hu proteins family which represent a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 409811 [Multi-domain]  Cd Length: 76  Bit Score: 38.07  E-value: 1.07e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGNKV 637
Cdd:cd12377   1 CIFVYNLAPDADESLLWQLFGpfGAVqNVKIIRDFTTNKCKGYGFVTMTNYDEAAVAIAslNGYRLGGRV 70
RRM2_PTBP1_hnRNPL_like cd12422
RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), ...
491-548 1.10e-03

RNA recognition motif (RRM) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), and similar proteins; This subfamily corresponds to the RRM2 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), polypyrimidine tract-binding protein homolog 3 (PTBPH3), polypyrimidine tract-binding protein homolog 1 and 2 (PTBPH1 and PTBPH2), and similar proteins, and RRM3 of PTBPH1 and PTBPH2. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. Rod1 is a mammalian polypyrimidine tract binding protein (PTB) homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It might play a role controlling differentiation in mammals. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL protein plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. This family also includes polypyrimidine tract binding protein homolog 3 (PTBPH3) found in plant. Although its biological roles remain unclear, PTBPH3 shows significant sequence similarity to other family members, all of which contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Although their biological roles remain unclear, both PTBPH1 and PTBPH2 show significant sequence similarity to PTB. However, in contrast to PTB, they have three RRMs.


Pssm-ID: 409856 [Multi-domain]  Cd Length: 85  Bit Score: 38.32  E-value: 1.10e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   491 SNLSYSATEETLQEVF------EK-ATFIKVPQNQngkskgyAFIEFASFEDAKEALNSCNKREI 548
Cdd:cd12422   7 TNLLYPVTVDVLHQVFspygavEKiVIFEKGTGVQ-------ALVQFDSVESAEAAKKALNGRNI 64
RRM1_PHIP1 cd12271
RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting ...
574-636 1.10e-03

RNA recognition motif 1 (RRM1) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; This subfamily corresponds to the RRM1 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409714 [Multi-domain]  Cd Length: 72  Bit Score: 38.08  E-value: 1.10e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRA-RIVTDRETGSSKGFGFVDFNSEEDAKEAME-DGEIDGNK 636
Cdd:cd12271   1 VYVGGIPYYSTEAEIRSYFSscGEVRSvDLMRFPDSGNFRGIAFITFKTEEAAKRALAlDGEMLGNR 67
RRM1_RBM45 cd12366
RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; ...
570-635 1.14e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 45 (RBM45) and similar proteins; This subfamily corresponds to the RRM1 of RBM45, also termed developmentally-regulated RNA-binding protein 1 (DRB1), a new member of RNA recognition motif (RRM)-type neural RNA-binding proteins, which expresses under spatiotemporal control. It is encoded by gene drb1 that is expressed in neurons, not in glial cells. RBM45 predominantly localizes in cytoplasm of cultured cells and specifically binds to poly(C) RNA. It could play an important role during neurogenesis. RBM45 carries four RRMs, also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409801 [Multi-domain]  Cd Length: 81  Bit Score: 38.45  E-value: 1.14e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   570 PSKTLFVKgLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DGEIDGN 635
Cdd:cd12366   2 PNSRLFVV-CSKSVTEDDLREAFSpfGEIQdIWVVKDKQTKESKGIAYVKFAKSSQAARAMEemHGKCLGD 71
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
487-555 1.17e-03

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 38.07  E-value: 1.17e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   487 TLVLSNLSYSATEETLQEVFE---KATFIKVPqnqNGKSKGyaFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12346   3 TVFVGGLDPNVTEEDLRVLFGpfgEIVYVKIP---PGKGCG--FVQFVNRASAEAAIQKLQGTPIGGSRIRL 69
RRM2_MSI1 cd12572
RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and ...
574-628 1.18e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and similar proteins; This subgroup corresponds to the RRM2 of Musashi-1. The mammalian MSI1 gene encoding Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells, and associated with asymmetric divisions in neural progenitor cells. Musashi-1 is evolutionarily conserved from invertebrates to vertebrates. It is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1) and has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. It represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-1 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 409986 [Multi-domain]  Cd Length: 74  Bit Score: 38.09  E-value: 1.18e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12572   2 IFVGGLSVNTTVEDVKQYFEqfGKVDdAMLMFDKTTNRHRGFGFVTFESEDIVEKVCE 59
RRM5_MRD1 cd12570
RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 ...
488-558 1.20e-03

RNA recognition motif 5 (RRM5) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM5 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 241014 [Multi-domain]  Cd Length: 76  Bit Score: 38.26  E-value: 1.20e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   488 LVLSNLSYSATEETLQEVFE---KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRaiRLELQ 558
Cdd:cd12570   3 ILVKNLPFEATKKDVRTLFSsygQLKSVRVPKKFDQSARGFAFVEFSTAKEALNAMNALKDTHLLGR--RLVLQ 74
RRM2_hnRNPH_CRSF1_like cd12504
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H ...
490-553 1.25e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein (hnRNP) H protein family; This subfamily corresponds to the RRM2 of hnRNP H protein family which includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9). They represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing, having similar RNA binding affinities and specifically recognizing the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. Furthermore, hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409927 [Multi-domain]  Cd Length: 77  Bit Score: 38.11  E-value: 1.25e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   490 LSNLSYSATEETLQEVFE----KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNScNKREIEGRAI 553
Cdd:cd12504   5 LRGLPYGCTKEEIAQFFSgleiVPNGITLPMDRRGRSTGEAFVQFASQEIAEQALGK-HKEKIGHRYI 71
RRM2_Prp24 cd12297
RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
487-560 1.29e-03

RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409738 [Multi-domain]  Cd Length: 78  Bit Score: 38.13  E-value: 1.29e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   487 TLVLSNLSYSATEETLQEVFEK---ATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGP 560
Cdd:cd12297   2 TLWVTNFPPSYDERSIRDLFGDygvILSVRLPSLRYNTSRRFCYIDFTSPESARAAVELLNGLLEEGYTLVVKISDP 78
RRM4_hnRNPL_like cd12427
RNA recognition motif 4 (RRM4) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) ...
485-550 1.31e-03

RNA recognition motif 4 (RRM4) found in heterogeneous nuclear ribonucleoprotein L (hnRNP-L) and similar proteins; This subfamily corresponds to the RRM4 of heterogeneous nuclear ribonucleoprotein L (hnRNP-L), heterogeneous nuclear ribonucleoprotein L-like (hnRNP-LL), and similar proteins. hnRNP-L is a higher eukaryotic specific subunit of human KMT3a (also known as HYPB or hSet2) complex required for histone H3 Lys-36 trimethylation activity. It plays both, nuclear and cytoplasmic, roles in mRNA export of intronless genes, IRES-mediated translation, mRNA stability, and splicing. hnRNP-LL plays a critical and unique role in the signal-induced regulation of CD45 and acts as a global regulator of alternative splicing in activated T cells. It is closely related in domain structure and sequence to hnRNP-L, which contains three RNA-recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409861 [Multi-domain]  Cd Length: 84  Bit Score: 38.38  E-value: 1.31e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   485 SKTLVLSNLSYSATEETLQEVFEKA-----TFIKVPQNQNGKSKGyAFIEFASFEDAKEALNSCNKREIEG 550
Cdd:cd12427   2 SKVLHFFNAPPEITEETLKELFIEAgapppVKVKVFPSKSERSSS-GLLEFESVEDALEALALCNHTPIKN 71
RRM4_RBM19_RRM3_MRD1 cd12317
RNA recognition motif 4 (RRM4) found in RNA-binding protein 19 (RBM19) and RNA recognition ...
486-556 1.32e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 19 (RBM19) and RNA recognition motif 3 (RRM3) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM4 of RBM19 and the RRM3 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well conserved in yeast and its homologues exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409756 [Multi-domain]  Cd Length: 72  Bit Score: 38.01  E-value: 1.32e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   486 KTLVLSNLSYSATEETLQEVFEKATFIK---VPqnqngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12317   1 TVILVKNLPFGATEEELRELFEKFGTLGrllLP-----PSRTIALVEFLEPQDARRAFKKLAYKRFKHVPLYLE 69
RRM_SRSF10_SRSF12 cd12312
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and ...
572-643 1.33e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor SRSF10, SRSF12 and similar proteins; This subfamily corresponds to the RRM of SRSF10 and SRSF12. SRSF10, also termed 40 kDa SR-repressor protein (SRrp40), or FUS-interacting serine-arginine-rich protein 1 (FUSIP1), or splicing factor SRp38, or splicing factor, arginine/serine-rich 13A (SFRS13A), or TLS-associated protein with Ser-Arg repeats (TASR). It is a serine-arginine (SR) protein that acts as a potent and general splicing repressor when dephosphorylated. It mediates global inhibition of splicing both in M phase of the cell cycle and in response to heat shock. SRSF10 emerges as a modulator of cholesterol homeostasis through the regulation of low-density lipoprotein receptor (LDLR) splicing efficiency. It also regulates cardiac-specific alternative splicing of triadin pre-mRNA and is required for proper Ca2+ handling during embryonic heart development. In contrast, the phosphorylated SRSF10 functions as a sequence-specific splicing activator in the presence of a nuclear cofactor. It activates distal alternative 5' splice site of adenovirus E1A pre-mRNA in vivo. Moreover, SRSF10 strengthens pre-mRNA recognition by U1 and U2 snRNPs. SRSF10 localizes to the nuclear speckles and can shuttle between nucleus and cytoplasm. SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19), is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. Both, SRSF10 and SRSF12, contain a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 240758 [Multi-domain]  Cd Length: 84  Bit Score: 38.12  E-value: 1.33e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   572 KTLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDRETGSSKGFGFVDFNSEEDAKEAM---EDGEIDGNKVTLDWAK 643
Cdd:cd12312   1 TSLFVRNVADDTRPDDLRREFGryGPIVdVYIPLDFYTRRPRGFAYIQFEDVRDAEDALyylDRTRFLGREIEIQFAQ 78
RRM1_hnRNPAB cd12757
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) ...
574-637 1.38e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) and similar proteins; This subgroup corresponds to the RRM1 of hnRNP A/B, also termed APOBEC1-binding protein 1 (ABBP-1), which is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus plays an important role in apoB mRNA editing. hnRNP A/B contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long C-terminal glycine-rich domain that contains a potential ATP/GTP binding loop.


Pssm-ID: 410151 [Multi-domain]  Cd Length: 80  Bit Score: 38.03  E-value: 1.38e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   574 LFVKGLSEDTTEETLKE---SFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMEDGE--IDGNKV 637
Cdd:cd12757   7 MFVGGLSWDTSKKDLKDyftKFGEVVDCTIKMDPNTGRSRGFGFILFKDAASVDKVLEQKEhrLDGRVI 75
RRM_RBM8 cd12324
RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; ...
395-460 1.41e-03

RNA recognition motif (RRM) found in RNA-binding protein RBM8A, RBM8B nd similar proteins; This subfamily corresponds to the RRM of RBM8, also termed binder of OVCA1-1 (BOV-1), or RNA-binding protein Y14, which is one of the components of the exon-exon junction complex (EJC). It has two isoforms, RBM8A and RBM8B, both of which are identical except that RBM8B is 16 amino acids shorter at its N-terminus. RBM8, together with other EJC components (such as Magoh, Aly/REF, RNPS1, Srm160, and Upf3), plays critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. RBM8 binds to mRNA 20-24 nucleotides upstream of a spliced exon-exon junction. It is also involved in spliced mRNA nuclear export, and the process of nonsense-mediated decay of mRNAs with premature stop codons. RBM8 forms a specific heterodimer complex with the EJC protein Magoh which then associates with Aly/REF, RNPS1, DEK, and SRm160 on the spliced mRNA, and inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA. RBM8 contains an N-terminal putative bipartite nuclear localization signal, one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), in the central region, and a C-terminal serine-arginine rich region (SR domain) and glycine-arginine rich region (RG domain).


Pssm-ID: 409762 [Multi-domain]  Cd Length: 88  Bit Score: 38.36  E-value: 1.41e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIR-----LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSIS 460
Cdd:cd12324   9 IFVTGVHEEAQEEDIHDKFAEFGEIKnlhlnLDRRTGFVKGYALVEYETKKEAQAAIEGLNGKELLGQTIS 79
RRM_TRA2A cd12642
RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and ...
405-464 1.48e-03

RNA recognition motif (RRM) found in transformer-2 protein homolog alpha (TRA-2 alpha) and similar proteins; This subgroup corresponds to the RRM of TRA2-alpha or TRA-2-alpha, also termed transformer-2 protein homolog A, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-alpha is a 40-kDa serine/arginine-rich (SR) protein (SRp40) that specifically binds to gonadotropin-releasing hormone (GnRH) exonic splicing enhancer on exon 4 (ESE4) and is necessary for enhanced GnRH pre-mRNA splicing. It strongly stimulates GnRH intron A excision in a dose-dependent manner. In addition, TRA2-alpha can interact with either 9G8 or SRp30c, which may also be crucial for ESE-dependent GnRH pre-mRNA splicing. TRA2-alpha contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions.


Pssm-ID: 410047 [Multi-domain]  Cd Length: 84  Bit Score: 38.05  E-value: 1.48e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   405 TQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12642  17 TERDLREVFSRYGPLAGVNvvydqRTGRSRGFAFVYFERIDDSKEAMERANGMELDGRRIRVDYS 81
RRM_CFIm68_CFIm59 cd12372
RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or ...
426-458 1.53e-03

RNA recognition motif (RRM) found in pre-mRNA cleavage factor Im 68 kDa subunit (CFIm68 or CPSF6), pre-mRNA cleavage factor Im 59 kDa subunit (CFIm59 or CPSF7), and similar proteins; This subfamily corresponds to the RRM of cleavage factor Im (CFIm) subunits. Cleavage factor Im (CFIm) is a highly conserved component of the eukaryotic mRNA 3' processing machinery that functions in UGUA-mediated poly(A) site recognition, the regulation of alternative poly(A) site selection, mRNA export, and mRNA splicing. It is a complex composed of a small 25 kDa (CFIm25) subunit and a larger 59/68/72 kDa subunit. Two separate genes, CPSF6 and CPSF7, code for two isoforms of the large subunit, CFIm68 and CFIm59. Structurally related CFIm68 and CFIm59, also termed cleavage and polyadenylation specificity factor subunit 6 (CPSF7), or cleavage and polyadenylation specificity factor 59 kDa subunit (CPSF59), are functionally redundant. Both contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a central proline-rich region, and a C-terminal RS-like domain. Their N-terminal RRM mediates the interaction with CFIm25, and also serves to enhance RNA binding and facilitate RNA looping.


Pssm-ID: 409807 [Multi-domain]  Cd Length: 76  Bit Score: 37.68  E-value: 1.53e-03
                        10        20        30
                ....*....|....*....|....*....|...
gi 189306   426 GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRS 458
Cdd:cd12372  39 GKSKGYAYVEFASPAAAAAVKEKLEKREFNGRP 71
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
492-556 1.56e-03

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 37.59  E-value: 1.56e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   492 NLSYSATEETLQEVFEKatFIKVpqNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12343   6 NLPDAATSEELRALFEK--YGKV--TECDIVKNYAFVHMEKEEDAEDAIKALNGYEFMGSRINVE 66
RRM2_CID8_like cd12460
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana CTC-interacting domain protein ...
389-445 1.59e-03

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM2 domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409893 [Multi-domain]  Cd Length: 82  Bit Score: 37.76  E-value: 1.59e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   389 ERDARTLLAKNLPYKVTQDELKEVFEDA----AEIRLVSKDGKSKGIAYIEFkteADAEKT 445
Cdd:cd12460   1 EMCARTIYCTNIDKKVTQDDVKAFFESLcgevHRLRLLGDYVHSTRIAFVEF---VMAESA 58
RRM3_hnRNPH_CRSF1_like cd12506
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H ...
493-559 1.65e-03

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein hnRNP H protein family, G-rich sequence factor 1 (GRSF-1) and similar proteins; This subfamily corresponds to the RRM3 of hnRNP H proteins and GRSF-1. The hnRNP H protein family includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), hnRNP F and hnRNP H3 (also termed hnRNP 2H9), which represent a group of nuclear RNA binding proteins that are involved in pre-mRNA processing. These proteins have similar RNA binding affinities and specifically recognize the sequence GGGA. They can either stimulate or repress splicing upon binding to a GGG motif. hnRNP H binds to the RNA substrate in the presence or absence of these proteins, whereas hnRNP F binds to the nuclear mRNA only in the presence of cap-binding proteins. hnRNP H and hnRNP H2 are almost identical; both have been found to bind nuclear-matrix proteins. hnRNP H activates exon inclusion by binding G-rich intronic elements downstream of the 5' splice site in the transcripts of c-src, human immunodeficiency virus type 1 (HIV-1), Bcl-X, GRIN1, and myelin. It silences exons when bound to exonic elements in the transcripts of beta-tropomyosin, HIV-1, and alpha-tropomyosin. hnRNP H2 has been implicated in pre-mRNA 3' end formation. hnRNP H3 may be involved in the splicing arrest induced by heat shock. Most family members contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. For instance, members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, the family members have an extensive glycine-rich region near the C-terminus, which may allow them to homo- or heterodimerize. The family also includes a cytoplasmic poly(A)+ mRNA binding protein, GRSF-1, which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 also contains three potential RRMs responsible for the RNA binding, and two auxiliary domains (an acidic alpha-helical domain and an N-terminal alanine-rich region) that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 409929 [Multi-domain]  Cd Length: 75  Bit Score: 37.74  E-value: 1.65e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   493 LSYSATEETLQEVFE--KATFIKVPQNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLELQG 559
Cdd:cd12506   8 LPYRATENDIFEFFSplNPVNVRIRYNKDGRATGEADVEFATHEDAVAAM-SKDRENMGHRYIELFLNS 75
RRM_RBM42 cd12383
RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This ...
492-555 1.65e-03

RNA recognition motif (RRM) found in RNA-binding protein 42 (RBM42) and similar proteins; This subfamily corresponds to the RRM of RBM42 which has been identified as a heterogeneous nuclear ribonucleoprotein K (hnRNP K)-binding protein. It also directly binds the 3' untranslated region of p21 mRNA that is one of the target mRNAs for hnRNP K. Both, hnRNP K and RBM42, are components of stress granules (SGs). Under nonstress conditions, RBM42 predominantly localizes within the nucleus and co-localizes with hnRNP K. Under stress conditions, hnRNP K and RBM42 form cytoplasmic foci where the SG marker TIAR localizes, and may play a role in the maintenance of cellular ATP level by protecting their target mRNAs. RBM42 contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409817 [Multi-domain]  Cd Length: 83  Bit Score: 38.03  E-value: 1.65e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   492 NLSYSATEETLQEVFEK-ATFIK---VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12383  13 DLGNEVTDEVLARAFSKyPSFQKakvIRDKRTGKSKGYGFVSFKDPNDYLKALREMNGKYVGNRPIKL 80
RRM1_RIM4_like cd12453
RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; ...
309-382 1.74e-03

RNA recognition motif 1 (RRM1) found in yeast meiotic activator RIM4 and similar proteins; This subfamily corresponds to the RRM1 of RIM4, also termed regulator of IME2 protein 4, a putative RNA binding protein that is expressed at elevated levels early in meiosis. It functions as a meiotic activator required for both the IME1- and IME2-dependent pathways of meiotic gene expression, as well as early events of meiosis, such as meiotic division and recombination, in Saccharomyces cerevisiae. RIM4 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The family also includes a putative RNA-binding protein termed multicopy suppressor of sporulation protein Msa1. It is a putative RNA-binding protein encoded by a novel gene, msa1, from the fission yeast Schizosaccharomyces pombe. Msa1 may be involved in the inhibition of sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway. Like RIM4, Msa1 also contains two RRMs, both of which are essential for the function of Msa1.


Pssm-ID: 409887 [Multi-domain]  Cd Length: 86  Bit Score: 37.77  E-value: 1.74e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   309 LFVGNLNFNKSAPELKTGISDVFAK-NDLAVVDV-RIGMTRKFGYVDFESAEDLEKALELT-GLKVFGNEIKLEKPK 382
Cdd:cd12453   5 LFVASLSSARSDEELCAAVTNHFSKwGELLNVKVlKDWSNRPYAFVQYTNTEDAKNALVNGhNTLLDGRHLRVEKAK 81
RRM2_PHIP1 cd12272
RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting ...
487-555 1.75e-03

RNA recognition motif 2 (RRM2) found in Arabidopsis thaliana phragmoplastin interacting protein 1 (PHIP1) and similar proteins; The CD corresponds to the RRM2 of PHIP1. A. thaliana PHIP1 and its homologs represent a novel class of plant-specific RNA-binding proteins that may play a unique role in the polarized mRNA transport to the vicinity of the cell plate. The family members consist of multiple functional domains, including a lysine-rich domain (KRD domain) that contains three nuclear localization motifs (KKKR/NK), two RNA recognition motifs (RRMs), and three CCHC-type zinc fingers. PHIP1 is a peripheral membrane protein and is localized at the cell plate during cytokinesis in plants. In addition to phragmoplastin, PHIP1 interacts with two Arabidopsis small GTP-binding proteins, Rop1 and Ran2. However, PHIP1 interacted only with the GTP-bound form of Rop1 but not the GDP-bound form. It also binds specifically to Ran2 mRNA.


Pssm-ID: 409715 [Multi-domain]  Cd Length: 73  Bit Score: 37.38  E-value: 1.75e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   487 TLVLSNLSYSATEETLQEVFE---KATFIKVPQNQN-GKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRL 555
Cdd:cd12272   1 TVYIGNLAWDIDEDDLRELFAeccEITNVRLHTDKEtGEFKGYGHVEFADEESLDAAL-KLAGTKLCGRPIRV 72
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
399-459 1.75e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 38.04  E-value: 1.75e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAA--EIRLVsKD---GKSKGIAYIEFKTEADAEKTFeEKQGTEIDGRSI 459
Cdd:cd12401  12 NLPFNTVQGDLDAIFKDLKvrSVRLV-RDretDKFKGFCYVEFEDLESLKEAL-EYDGALFEDRPL 75
RRM3_HRB1_GBP2 cd21607
RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, ...
484-545 1.75e-03

RNA recognition motif 3 (RRM3) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the third RRM motif.


Pssm-ID: 410186 [Multi-domain]  Cd Length: 79  Bit Score: 37.69  E-value: 1.75e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   484 ESKTLVLSNLSYSATEETLQEVFEkaTFIKVPQ-----NQNGKSKGYAFIEFASFEDAKEALNSCNK 545
Cdd:cd21607   1 RNNTIYCSNLPLSTAESDLYDLFE--TIGKVNNaelkyDETGDPTGSAVVEYENLDDADVCISKLNN 65
RRM1_Hu_like cd12375
RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), ...
395-463 1.80e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family, Drosophila sex-lethal (SXL), and similar proteins; This subfamily corresponds to the RRM1 of Hu proteins and SXL. The Hu proteins family represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions. This family also includes the sex-lethal protein (SXL) from Drosophila melanogaster. SXL governs sexual differentiation and X chromosome dosage compensation in flies. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds to its own pre-mRNA and promotes female-specific alternative splicing. It contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RRMs that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 409810 [Multi-domain]  Cd Length: 76  Bit Score: 37.77  E-value: 1.80e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12375   2 LIVNYLPQSMTQEELRSLFGAIGPIESCKlvrdkITGQSLGYGFVNYRDPNDARKAINTLNGLDLENKRLKVSY 75
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
392-457 1.94e-03

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 37.51  E-value: 1.94e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   392 ARTLLAKNLPYKVTQDELKEVFEDAAEIRLV-------SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGR 457
Cdd:cd21619   1 SNTIYVGNIDMTINEDALEKIFSRYGQVESVrrppihtDKADRTTGFGFIKYTDAESAERAMQQADGILLGRR 73
RRM_SR140 cd12223
RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This ...
574-644 1.96e-03

RNA recognition motif (RRM) found in U2-associated protein SR140 and similar proteins; This subgroup corresponds to the RRM of SR140 (also termed U2 snRNP-associated SURP motif-containing protein orU2SURP, or 140 kDa Ser/Arg-rich domain protein) which is a putative splicing factor mainly found in higher eukaryotes. Although it is initially identified as one of the 17S U2 snRNP-associated proteins, the molecular and physiological function of SR140 remains unclear. SR140 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a SWAP/SURP domain that is found in a number of pre-mRNA splicing factors in the middle region, and a C-terminal arginine/serine-rich domain (RS domain).


Pssm-ID: 409670 [Multi-domain]  Cd Length: 84  Bit Score: 37.66  E-value: 1.96e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   574 LFVKGLSEDTTEETLKESFD-----GSVRarIV---TDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKVTLDWA 642
Cdd:cd12223   4 LYVGNLPPSVTEEVLLREFGrfgplASVK--IMwprTEEERRRNRNCGFVAFMSRADAERAMRelNGkDVMGYELKLGWG 81

                ..
gi 189306   643 KP 644
Cdd:cd12223  82 KA 83
RRM1_NGR1_NAM8_like cd12611
RNA recognition motif 1 (RRM1) found in yeast negative growth regulatory protein NGR1, yeast ...
487-540 1.96e-03

RNA recognition motif 1 (RRM1) found in yeast negative growth regulatory protein NGR1, yeast protein NAM8 and similar proteins; This subgroup corresponds to the RRM1 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both, RNA and single-stranded DNA (ssDNA), in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The subgroup also includes NAM8, a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 410023 [Multi-domain]  Cd Length: 84  Bit Score: 37.84  E-value: 1.96e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   487 TLVLSNLSYSATEETLQEVF----EKATFIKVPQNQNGKSK---GYAFIEFASFEDAKEAL 540
Cdd:cd12611   1 TLWMGDLEPWMDENFIKQIWaslgLKPVNVKVIRSKSGGLNgnaGYCFVEFPSPHAAQNAL 61
RRM2_Crp79_Mug28 cd21621
RNA recognition motif 2 (RRM2) found in Schizosaccharomyces pombe mRNA export factor Crp79, ...
492-551 2.13e-03

RNA recognition motif 2 (RRM2) found in Schizosaccharomyces pombe mRNA export factor Crp79, meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410200 [Multi-domain]  Cd Length: 74  Bit Score: 37.30  E-value: 2.13e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   492 NLSYSATEETLQEVFEKA-----TFIkvpqNQNGKSKGYAFIE--FASFEDAKEALNSCNKREIEGR 551
Cdd:cd21621   5 NLPTDMTPKDLYNLFSEHgkvegTAI----NQVPDNRGRRYGEvaMNSYEDCQKALEYFNGYVYKGY 67
RRM3_hnRNPM cd12661
RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein M ...
395-459 2.19e-03

RNA recognition motif 3 (RRM3) found in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M); This subgroup corresponds to the RRM3 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. Moreover, hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. hnRNP M functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif).


Pssm-ID: 410062 [Multi-domain]  Cd Length: 77  Bit Score: 37.55  E-value: 2.19e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   395 LLAKNLPYKVTQDELKEVFEDA-----AEIRLvsKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12661   2 IFVRNLPFDFTWKMLKDKFNECghvlyADIKM--ENGKSKGCGVVRFESPEVAERACRMMNGIKLNGREI 69
RRM_RBM44 cd12248
RNA recognition motif (RRM) found in RNA-binding protein 44 (RBM44) and similar proteins; ...
492-557 2.25e-03

RNA recognition motif (RRM) found in RNA-binding protein 44 (RBM44) and similar proteins; This subgroup corresponds to the RRM of RBM44, a novel germ cell intercellular bridge protein that is localized in the cytoplasm and intercellular bridges from pachytene to secondary spermatocyte stages. RBM44 interacts with itself and testis-expressed gene 14 (TEX14). Unlike TEX14, RBM44 does not function in the formation of stable intercellular bridges. It carries an RNA recognition motif (RRM) that could potentially bind a multitude of RNA sequences in the cytoplasm and help to shuttle them through the intercellular bridge, facilitating their dispersion into the interconnected neighboring cells.


Pssm-ID: 409694 [Multi-domain]  Cd Length: 77  Bit Score: 37.59  E-value: 2.25e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   492 NLSYSATEETLQEVFEKATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12248   8 NLAPSVSEEDLLMHFEKYHVSKISIQKLSMNYRYASLTFDDASDAQAAVKEMNGKDISGRKVKVRY 73
RRM1_HuR cd12769
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup ...
395-463 2.26e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen R (HuR); This subgroup corresponds to the RRM1 of HuR, also termed ELAV-like protein 1 (ELAV-1), a ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response; it binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. Meanwhile, HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Like other Hu proteins, HuR contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410162 [Multi-domain]  Cd Length: 82  Bit Score: 37.71  E-value: 2.26e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEI---RLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12769   5 LIVNYLPQNMTQDELRSLFSSIGEVesaKLIRDKvaGHSLGYGFVNYVTAKDAERAINTLNGLRLQSKTIKVSY 78
RRM4_MRD1 cd12319
RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 ...
487-557 2.26e-03

RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409758 [Multi-domain]  Cd Length: 84  Bit Score: 37.46  E-value: 2.26e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   487 TLVLSNLSYSATEETLQEVFEKAT---FIKV-----PQNQNGK-SKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12319   2 TLFVKNLNFSTTNQHLTDVFKHLDgfvFARVktkpdPKRPGKTlSMGFGFVGFKTKEQAQAALKAMDGFVLDGHKLEVKF 81
RRM_BOULE cd12673
RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of ...
309-365 2.31e-03

RNA recognition motif (RRM) found in protein BOULE; This subgroup corresponds to the RRM of BOULE, the founder member of the human DAZ gene family. Invertebrates contain a single BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. BOULE encodes an RNA-binding protein containing an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a single copy of the DAZ motif. Although its specific biochemical functions remains to be investigated, BOULE protein may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 410074 [Multi-domain]  Cd Length: 81  Bit Score: 37.55  E-value: 2.31e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   309 LFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKFGYVDFESAEDLEKALE 365
Cdd:cd12673   5 IFVGGIDFKTNENDLRKFFAQYGSVKEVKIVNDRAGVSKGYGFITFETQEDAQKILQ 61
RRM3_hnRNPH3 cd12735
RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) ...
490-557 2.35e-03

RNA recognition motif 3 (RRM3) found in heterogeneous nuclear ribonucleoprotein H3 (hnRNP H3) and similar proteins; This subgroup corresponds to the RRM3 of hnRNP H3 (also termed hnRNP 2H9), a nuclear RNA binding protein that belongs to the hnRNP H protein family that also includes hnRNP H (also termed mcs94-1), hnRNP H2 (also termed FTP-3 or hnRNP H'), and hnRNP F. This family is involved in mRNA processing and exhibit extensive sequence homology. Currently, little is known about the functions of hnRNP H3 except for its role in the splicing arrest induced by heat shock. In addition, the typical hnRNP H proteins contain contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), except for hnRNP H3, in which the RRM1 is absent. RRM1 and RRM2 are responsible for the binding to the RNA at DGGGD motifs, and they play an important role in efficiently silencing the exon. Members in this family can regulate the alternative splicing of the fibroblast growth factor receptor 2 (FGFR2) transcripts, and function as silencers of FGFR2 exon IIIc through an interaction with the exonic GGG motifs. The lack of RRM1 could account for the reduced silencing activity within hnRNP H3. In addition, like other hnRNP H protein family members, hnRNP H3 has an extensive glycine-rich region near the C-terminus, which may allow it to homo- or heterodimerize.


Pssm-ID: 241179 [Multi-domain]  Cd Length: 75  Bit Score: 37.29  E-value: 2.35e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   490 LSNLSYSATEETLQEVFEKATFIKV--PQNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLEL 557
Cdd:cd12735   5 MRGLPFRATESDIANFFSPLNPIRVhiDIGADGRATGEADVEFATHEDAVAAM-SKDKNHMQHRYIELFL 73
RRM2_SF3B4 cd12335
RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar ...
488-556 2.36e-03

RNA recognition motif 2 (RRM2) found in splicing factor 3B subunit 4 (SF3B4) and similar proteins; This subfamily corresponds to the RRM2 of SF3B4, also termed pre-mRNA-splicing factor SF3b 49 kDa (SF3b50), or spliceosome-associated protein 49 (SAP 49). SF3B4 is a component of the multiprotein complex splicing factor 3b (SF3B), an integral part of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP. SF3B is essential for the accurate excision of introns from pre-messenger RNA, and is involved in the recognition of the pre-mRNA's branch site within the major and minor spliceosomes. SF3B4 functions to tether U2 snRNP with pre-mRNA at the branch site during spliceosome assembly. It is an evolutionarily highly conserved protein with orthologs across diverse species. SF3B4 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It binds directly to pre-mRNA and also interacts directly and highly specifically with another SF3B subunit called SAP 145.


Pssm-ID: 409772 [Multi-domain]  Cd Length: 83  Bit Score: 37.34  E-value: 2.36e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   488 LVLSNLSYSATEETLQEVFEK-ATFIKVPQ----NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12335   4 LFIGNLDPEVDEKLLYDTFSAfGVILQTPKimrdPDTGNSKGFGFVSFDSFEASDAAIEAMNGQYLCNRPITVS 77
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
574-627 2.36e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 37.38  E-value: 2.36e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFdGSV----RARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12650   3 LIVNYLPQNMTQDEIRSLF-SSIgeieSCKLIRDKVTGQSLGYGFVNYVDPSDAEKAI 59
RRM1_MSSP2 cd12471
RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-2; ...
568-627 2.40e-03

RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-2; This subgroup corresponds to the RRM1 of MSSP-2, also termed RNA-binding motif, single-stranded-interacting protein 2 (RBMS2), or suppressor of CDC2 with RNA-binding motif 3 (SCR3), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence T(C/A)TT, and stimulates DNA replication in the system using SV40 DNA. MSSP-2 is identical with Scr3, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-2 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409901 [Multi-domain]  Cd Length: 84  Bit Score: 37.41  E-value: 2.40e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   568 SQPSKTLFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12471   2 QLSKTNLYIRGLHPGTTDQDLVklcQPYGKIVSTKAILDKTTNKCKGYGFVDFDSPSAAQKAV 64
RRM2_HRB1_GBP2 cd21606
RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, ...
306-374 2.58e-03

RNA recognition motif 2 (RRM2) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410185 [Multi-domain]  Cd Length: 75  Bit Score: 36.96  E-value: 2.58e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   306 AFNLFVGNLNFNKSAPELKtgisDVFAK-NDLAVVDVRI---GMTRKFGYVDFESAEDLEKALE-LTGLKVFGN 374
Cdd:cd21606   1 GYEVFIANLPYSINWQALK----DMFKEcGDVLRADVELdynGRSRGFGTVIYATEEEMHRAIDtFNGYELEGR 70
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
394-461 2.70e-03

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 36.92  E-value: 2.70e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVsKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12346   3 TVFVGGLDPNVTEEDLRVLFGPFGEIVYV-KIPPGKGCGFVQFVNRASAEAAIQKLQGTPIGGSRIRL 69
RRM_DAZL_BOULE cd12412
RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and ...
399-461 2.72e-03

RNA recognition motif (RRM) found in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE; This subfamily corresponds to the RRM domain of two Deleted in AZoospermia (DAZ) autosomal homologs, DAZL (DAZ-like) and BOULE. BOULE is the founder member of the family and DAZL arose from BOULE in an ancestor of vertebrates. The DAZ gene subsequently originated from a duplication transposition of the DAZL gene. Invertebrates contain a single DAZ homolog, BOULE, while vertebrates, other than catarrhine primates, possess both BOULE and DAZL genes. The catarrhine primates possess BOULE, DAZL, and DAZ genes. The family members encode closely related RNA-binding proteins that are required for fertility in numerous organisms. These proteins contain an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a varying number of copies of a DAZ motif, believed to mediate protein-protein interactions. DAZL and BOULE contain a single copy of the DAZ motif, while DAZ proteins can contain 8-24 copies of this repeat. Although their specific biochemical functions remain to be investigated, DAZL proteins may interact with poly(A)-binding proteins (PABPs), and act as translational activators of specific mRNAs during gametogenesis.


Pssm-ID: 409846 [Multi-domain]  Cd Length: 81  Bit Score: 37.21  E-value: 2.72e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   399 NLPYKVTQDELKEVFEDAAEIRLV----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12412   9 GIDWDTTEEELREFFSKFGKVKDVkiikDRAGVSKGYGFVTFETQEDAEKIQKWGANLVFKGKKLNV 75
half-pint TIGR01645
poly-U binding splicing factor, half-pint family; The proteins represented by this model ...
402-555 2.81e-03

poly-U binding splicing factor, half-pint family; The proteins represented by this model contain three RNA recognition motifs (rrm: pfam00076) and have been characterized as poly-pyrimidine tract binding proteins associated with RNA splicing factors. In the case of PUF60 (GP|6176532), in complex with p54, and in the presence of U2AF, facilitates association of U2 snRNP with pre-mRNA.


Pssm-ID: 130706 [Multi-domain]  Cd Length: 612  Bit Score: 40.82  E-value: 2.81e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     402 YKVTQDELKEVFEDAAEIRLV-----SKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTGEKGQNQDYRGG 476
Cdd:TIGR01645 117 FELREDTIRRAFDPFGPIKSInmswdPATGKHKGFAFVEYEVPEAAQLALEQMNGQMLGGRNIKVGRPSNMPQAQPIIDM 196
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     477 KNSTWSGESKTLVlSNLSYSATEETLQEVFEKATFIKVPQ----NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRA 552
Cdd:TIGR01645 197 VQEEAKKFNRIYV-ASVHPDLSETDIKSVFEAFGEIVKCQlaraPTGRGHKGYGFIEYNNLQSQSEAIASMNLFDLGGQY 275

                  ...
gi 189306     553 IRL 555
Cdd:TIGR01645 276 LRV 278
RRM_CIRBP_RBM3 cd12449
RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding ...
395-467 2.82e-03

RNA recognition motif (RRM) found in cold inducible RNA binding protein (CIRBP), RNA binding motif protein 3 (RBM3) and similar proteins; This subfamily corresponds to the RRM domain of two structurally related heterogenous nuclear ribonucleoproteins, CIRBP (also termed CIRP or A18 hnRNP) and RBM3 (also termed RNPL), both of which belong to a highly conserved cold shock proteins family. The cold shock proteins can be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. CIRBP and RBM3 may function in posttranscriptional regulation of gene expression by binding to different transcripts, thus allowing the cell to response rapidly to environmental signals. However, the kinetics and degree of cold induction are different between CIRBP and RBM3. Tissue distribution of their expression is different. CIRBP and RBM3 may be differentially regulated under physiological and stress conditions and may play distinct roles in cold responses of cells. CIRBP, also termed glycine-rich RNA-binding protein CIRP, is localized in the nucleus and mediates the cold-induced suppression of cell cycle progression. CIRBP also binds DNA and possibly serves as a chaperone that assists in the folding/unfolding, assembly/disassembly and transport of various proteins. RBM3 may enhance global protein synthesis and the formation of active polysomes while reducing the levels of ribonucleoprotein complexes containing microRNAs. RBM3 may also serve to prevent the loss of muscle mass by its ability to decrease cell death. Furthermore, RBM3 may be essential for cell proliferation and mitosis. Both, CIRBP and RBM3, contain an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), that is involved in RNA binding, and C-terminal glycine-rich domain (RGG motif) that probably enhances RNA-binding via protein-protein and/or protein-RNA interactions. Like CIRBP, RBM3 can also bind to both RNA and DNA via its RRM domain.


Pssm-ID: 409883 [Multi-domain]  Cd Length: 80  Bit Score: 37.07  E-value: 2.82e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEIR--LVSKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTGEK 467
Cdd:cd12449   3 LFVGGLSFDTNEQSLEEVFSKYGQISevVVVKDretQRSRGFGFVTFENPDDAKDAMMAMNGKSLDGRQIRVDQAGKS 80
RRM_SRSF12 cd12560
RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 12 (SRSF12) and ...
521-564 2.86e-03

RNA recognition motif (RRM) found in serine/arginine-rich splicing factor 12 (SRSF12) and similar proteins; This subgroup corresponds to the RRM of SRSF12, also termed 35 kDa SR repressor protein (SRrp35), or splicing factor, arginine/serine-rich 13B (SFRS13B), or splicing factor, arginine/serine-rich 19 (SFRS19). SRSF12 is a serine/arginine (SR) protein-like alternative splicing regulator that antagonizes authentic SR proteins in the modulation of alternative 5' splice site choice. For instance, it activates distal alternative 5' splice site of the adenovirus E1A pre-mRNA in vivo. SRSF12 contains a single N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), followed by a C-terminal RS domain rich in serine-arginine dipeptides.


Pssm-ID: 409976 [Multi-domain]  Cd Length: 84  Bit Score: 37.29  E-value: 2.86e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*
gi 189306   521 KSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL-QGPRGSP 564
Cdd:cd12560  40 RPRGFAYIQFEDVRDAEDALYNLNRKWVCGRQIEIQFaQGDRKTP 84
RRM2_TIA1_like cd12353
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and ...
404-459 2.91e-03

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM2 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis. TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409789 [Multi-domain]  Cd Length: 75  Bit Score: 36.99  E-value: 2.91e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   404 VTQDELKEVFEDAAEI---RLVsKD---GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12353  11 IETEDLKEAFAPFGEIsdaRVV-KDtqtGKSKGYGFVSFVKKEDAENAIQGMNGQWLGGRNI 71
RRM3_NGR1_NAM8_like cd12346
RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), ...
573-641 3.04e-03

RNA recognition motif 3 (RRM3) found in yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8 and similar proteins; This subfamily corresponds to the RRM3 of NGR1 and NAM8. NGR1, also termed RNA-binding protein RBP1, is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA) in yeast. It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the carboxyl terminus which also harbors a methionine-rich region. The family also includes protein NAM8, which is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. Like NGR1, NAM8 contains two RRMs.


Pssm-ID: 409782 [Multi-domain]  Cd Length: 72  Bit Score: 36.92  E-value: 3.04e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 189306   573 TLFVKGLSEDTTEETLKESFdgSVRARIVTDReTGSSKGFGFVDFNSEEDAKEAME--DGEIDGN-KVTLDW 641
Cdd:cd12346   3 TVFVGGLDPNVTEEDLRVLF--GPFGEIVYVK-IPPGKGCGFVQFVNRASAEAAIQklQGTPIGGsRIRLSW 71
RRM2_hnRNPM cd12659
RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein M ...
394-442 3.17e-03

RNA recognition motif 2 (RRM2) found in vertebrate heterogeneous nuclear ribonucleoprotein M (hnRNP M); This subgroup corresponds to the RRM2 of hnRNP M, a pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif).


Pssm-ID: 410060 [Multi-domain]  Cd Length: 76  Bit Score: 36.95  E-value: 3.17e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIR----LVSKDGKSKGIAYIEFKTEADA 442
Cdd:cd12659   2 TVFVANLDYKVGWKKLKEVFSMAGVVVradiLEDKDGKSRGIGTVTFEQPIEA 54
RRM1_SXL cd12649
RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This ...
487-562 3.18e-03

RNA recognition motif 1 (RRM1) found in Drosophila sex-lethal (SXL) and similar proteins; This subfamily corresponds to the RRM1 of SXL which governs sexual differentiation and X chromosome dosage compensation in Drosophila melanogaster. It induces female-specific alternative splicing of the transformer (tra) pre-mRNA by binding to the tra uridine-rich polypyrimidine tract at the non-sex-specific 3' splice site during the sex-determination process. SXL binds also to its own pre-mRNA and promotes female-specific alternative splicing. SXL contains an N-terminal Gly/Asn-rich domain that may be responsible for the protein-protein interaction, and tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), that show high preference to bind single-stranded, uridine-rich target RNA transcripts.


Pssm-ID: 241093 [Multi-domain]  Cd Length: 81  Bit Score: 36.99  E-value: 3.18e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   487 TLVLSNLSYSATEETLQEVFEKATFIK----VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPRG 562
Cdd:cd12649   2 NLIVNYLPQDLTDREFRALFRAIGPVNtckiVRDKKTGYSYGFGFVDFTSEEDAQRAIKTLNGLQLQNKRLKVAYARPGG 81
RRM_RBM7 cd12592
RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily ...
393-461 3.27e-03

RNA recognition motif (RRM) found in vertebrate RNA-binding protein 7 (RBM7); This subfamily corresponds to the RRM of RBM7, a ubiquitously expressed pre-mRNA splicing factor that enhances messenger RNA (mRNA) splicing in a cell-specific manner or in a certain developmental process, such as spermatogenesis. RBM7 interacts with splicing factors SAP145 (the spliceosomal splicing factor 3b subunit 2) and SRp20. It may play a more specific role in meiosis entry and progression. Together with additional testis-specific RNA-binding proteins, RBM7 may regulate the splicing of specific pre-mRNA species that are important in the meiotic cell cycle. RBM7 contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region lacking known homology at the C-terminus.


Pssm-ID: 410005 [Multi-domain]  Cd Length: 75  Bit Score: 36.73  E-value: 3.27e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVS----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12592   2 RTLFVGNLDTKVTEELLFELFLQAGPVIKVKipkdKDGKPKQFAFVNFKHEVSVPYAMNLLNGIKLYGRPLKI 74
RRM2_PSRP2 cd21610
RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
574-627 3.28e-03

RNA recognition motif 2 (RRM2) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). PSRP-2 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410189 [Multi-domain]  Cd Length: 79  Bit Score: 36.83  E-value: 3.28e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   574 LFVKGLSEDTTEETLKESFDGS---VRARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd21610   5 VYVGNLAKTVTNELLKDFFSEKgkvLGAKVQRTPGTSKSNGFGFVSFSSEEDVEAAI 61
RRM2_HuC cd12776
RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup ...
574-628 3.48e-03

RNA recognition motif 2 (RRM2) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM2 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 241220 [Multi-domain]  Cd Length: 81  Bit Score: 36.90  E-value: 3.48e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   574 LFVKGLSEDTTEETLKESFDGSVR---ARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12776   4 LYVSGLPKTMSQKEMEQLFSQYGRiitSRILVDQVTGVSRGVGFIRFDKRIEAEEAIK 61
RRM1_SECp43 cd12610
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43); ...
573-627 3.49e-03

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43); This subgroup corresponds to the RRM1 of SECp43, an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region.


Pssm-ID: 410022 [Multi-domain]  Cd Length: 84  Bit Score: 36.92  E-value: 3.49e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFDGS----VRARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12610   1 SLWMGDLEPYMDENFIKRAFATMgetvLSVKIIRNRVTGGPAGYCFVEFADEATAERCL 59
RRM1_MSSP1 cd12470
RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; ...
569-627 3.61e-03

RNA recognition motif 1 (RRM1) found in vertebrate single-stranded DNA-binding protein MSSP-1; This subgroup corresponds to the RRM1 of MSSP-1, also termed RNA-binding motif, single-stranded-interacting protein 1 (RBMS1), or suppressor of CDC2 with RNA-binding motif 2 (SCR2), a double- and single-stranded DNA binding protein that belongs to the c-myc single-strand binding proteins (MSSP) family. It specifically recognizes the sequence CT(A/T)(A/T)T, and stimulates DNA replication in the system using SV40 DNA. MSSP-1 is identical with Scr2, a human protein which complements the defect of cdc2 kinase in Schizosaccharomyces pombe. MSSP-1 has been implied in regulating DNA replication, transcription, apoptosis induction, and cell-cycle movement, via the interaction with C-MYC, the product of protooncogene c-myc. MSSP-1 contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), both of which are responsible for the specific DNA binding activity as well as induction of apoptosis.


Pssm-ID: 409900 [Multi-domain]  Cd Length: 86  Bit Score: 37.07  E-value: 3.61e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   569 QPSKT-LFVKGLSEDTTEETLK---ESFDGSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12470   4 QLSKTnLYIRGLPPNTTDQDLVklcQPYGKIVSTKAILDKTTNKCKGYGFVDFDSPAAAQKAV 66
RRM1_GRSF1 cd12730
RNA recognition motif 1 (RRM1) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; ...
397-448 3.63e-03

RNA recognition motif 1 (RRM1) found in G-rich sequence factor 1 (GRSF-1) and similar proteins; This subgroup corresponds to the RRM1 of GRSF-1, a cytoplasmic poly(A)+ mRNA binding protein which interacts with RNA in a G-rich element-dependent manner. It may function in RNA packaging, stabilization of RNA secondary structure, or other macromolecular interactions. GRSF-1 contains three potential RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for the RNA binding. In addition, GRSF-1 has two auxiliary domains, an acidic alpha-helical domain and an N-terminal alanine-rich region, that may play a role in protein-protein interactions and provide binding specificity.


Pssm-ID: 410129 [Multi-domain]  Cd Length: 79  Bit Score: 36.70  E-value: 3.63e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   397 AKNLPYKVTQDELKEVFEDAaEIR--------LVSKDGKSKGIAYIEFKTEADAEKTFEE 448
Cdd:cd12730   6 ARGLPWSCTAEDVLSFFSDC-RIRngedgihfLLNRDGKRRGDALIELESEEDVQKALEQ 64
RRM2_NEFsp cd12274
RNA recognition motif 2 (RRM2) found in vertebrate putative RNA exonuclease NEF-sp; This ...
490-544 3.75e-03

RNA recognition motif 2 (RRM2) found in vertebrate putative RNA exonuclease NEF-sp; This subfamily corresponds to the RRM2 of NEF-sp., including uncharacterized putative RNA exonuclease NEF-sp found in vertebrates. Although its cellular functions remains unclear, NEF-sp contains an exonuclease domain and two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), suggesting it may possess both exonuclease and RNA-binding activities.


Pssm-ID: 409717 [Multi-domain]  Cd Length: 71  Bit Score: 36.76  E-value: 3.75e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   490 LSNLSYSATEETLQEVFE-----KATFIKVpQNQNGKSKGYAFIEFASFEDAKEALNSCN 544
Cdd:cd12274   3 VSGFKKSLTEEDLQERFSqlsdlEAVFLPK-DLQSGKHKKYCFLKFRSSQSAQAALDIIT 61
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
571-626 3.79e-03

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 37.22  E-value: 3.79e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   571 SKTLFVKGLSEDTTEET-LKESFD--GSVR-ARIVTDRetGSSKGFGFVDFNSEEDAKEA 626
Cdd:cd12390   2 SKCLFVDRLPKDFRDGSeLRKLFSqvGKPTfCQLAMGN--GVPRGFAFVEFASAEDAEEA 59
RRM1_NCL cd12403
RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to ...
573-637 3.79e-03

RNA recognition motif 1 (RRM1) found in vertebrate nucleolin; This subfamily corresponds to the RRM1 of ubiquitously expressed protein nucleolin, also termed protein C23. Nucleolin is a multifunctional major nucleolar phosphoprotein that has been implicated in various metabolic processes, such as ribosome biogenesis, cytokinesis, nucleogenesis, cell proliferation and growth, cytoplasmic-nucleolar transport of ribosomal components, transcriptional repression, replication, signal transduction, inducing chromatin decondensation, etc. Nucleolin exhibits intrinsic self-cleaving, DNA helicase, RNA helicase and DNA-dependent ATPase activities. It can be phosphorylated by many protein kinases, such as the major mitotic kinase Cdc2, casein kinase 2 (CK2), and protein kinase C-zeta. Nucleolin shares similar domain architecture with gar2 from Schizosaccharomyces pombe and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of nucleolin is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of nucleolin contains four closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which suggests that nucleolin is potentially able to interact with multiple RNA targets. The C-terminal RGG (or GAR) domain of nucleolin is rich in glycine, arginine and phenylalanine residues, and contains high levels of NG,NG-dimethylarginines. RRM1, together with RRM2, binds specifically to RNA stem-loops containing the sequence (U/G)CCCG(A/G) in the loop.


Pssm-ID: 409837 [Multi-domain]  Cd Length: 75  Bit Score: 36.63  E-value: 3.79e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   573 TLFVKGLSEDTTEETLKESFDG--SVRARIVTDRETGSSKGFGFVDFNSEEDAKEAMedgEIDGNKV 637
Cdd:cd12403   2 SLFVGNLNSNKSFEELKTAISEffAKKDLAVVDVRIGSSKKFGYVDFESAEDLEKAL---ELNGKKV 65
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
569-627 3.80e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 37.01  E-value: 3.80e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   569 QPSKT-LFVKGLSEDTTEETLKESFdGSV----RARIVTDRETGSSKGFGFVDFNSEEDAKEAM 627
Cdd:cd12771   1 EDSKTnLIVNYLPQNMTQEELKSLF-GSIgeieSCKLVRDKITGQSLGYGFVNYIEPKDAEKAI 63
RRM_cwf2 cd12360
RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; ...
571-642 3.82e-03

RNA recognition motif (RRM) found in yeast pre-mRNA-splicing factor Cwc2 and similar proteins; This subfamily corresponds to the RRM of yeast protein Cwc2, also termed Complexed with CEF1 protein 2, or PRP19-associated complex protein 40 (Ntc40), or synthetic lethal with CLF1 protein 3, one of the components of the Prp19-associated complex [nineteen complex (NTC)] that can bind to RNA. NTC is composed of the scaffold protein Prp19 and a number of associated splicing factors, and plays a crucial role in intron removal during premature mRNA splicing in eukaryotes. Cwc2 functions as an RNA-binding protein that can bind both small nuclear RNAs (snRNAs) and pre-mRNA in vitro. It interacts directly with the U6 snRNA to link the NTC to the spliceosome during pre-mRNA splicing. In the N-terminal half, Cwc2 contains a CCCH-type zinc finger (ZnF domain), a RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and an intervening loop, also termed RNA-binding loop or RB loop, between ZnF and RRM, all of which are necessary and sufficient for RNA binding. The ZnF is also responsible for mediating protein-protein interaction. The C-terminal flexible region of Cwc2 interacts with the WD40 domain of Prp19.


Pssm-ID: 409795 [Multi-domain]  Cd Length: 79  Bit Score: 36.86  E-value: 3.82e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   571 SKTLFVKGLSE-----DTTEETLKESFD--GSV-RARIVtdretgSSKGFGFVDF---NSEEDAKEAMEDGEIDGNKV-T 638
Cdd:cd12360   1 NRTLYVGGIKAasnklAQIEEILRRHFGewGEIeRIRVL------PSKGIAFVRYknrANAEFAKEAMADQSLDGGEVlN 74

                ....
gi 189306   639 LDWA 642
Cdd:cd12360  75 VRWA 78
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
574-644 3.97e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 36.53  E-value: 3.97e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   574 LFVKGLSEDTTEETLKESFDGSVRARIVTDRetgssKGFGFVDFNSEEDAKEAMED---GEIDGNKVTLDWAKP 644
Cdd:cd12337   2 VYIGRLPYRARERDVERFFRGYGRIRDINLK-----NGFGFVEFEDPRDADDAVYElngKELCGERVIVEHARG 70
RRM1_hnRNPR cd12482
RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R ...
499-548 3.99e-03

RNA recognition motif 1 (RRM1) found in vertebrate heterogeneous nuclear ribonucleoprotein R (hnRNP R); This subgroup corresponds to the RRM1 of hnRNP R, which is a ubiquitously expressed nuclear RNA-binding protein that specifically binds mRNAs with a preference for poly(U) stretches. Upon binding of RNA, hnRNP R forms oligomers, most probably dimers. hnRNP R has been implicated in mRNA processing and mRNA transport, and also acts as a regulator to modify binding to ribosomes and RNA translation. It is predominantly located in axons of motor neurons and to a much lower degree in sensory axons. In axons of motor neurons, it also functions as a cytosolic protein and interacts with wild type of survival motor neuron (SMN) proteins directly, further providing a molecular link between SMN and the spliceosome. Moreover, hnRNP R plays an important role in neural differentiation and development, and in retinal development and light-elicited cellular activities. hnRNP R contains an acidic auxiliary N-terminal region, followed by two well defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RGG motif; it binds RNA through its RRM domains.


Pssm-ID: 409909 [Multi-domain]  Cd Length: 79  Bit Score: 36.88  E-value: 3.99e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 189306   499 EETLQEVFEKATFI----KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREI 548
Cdd:cd12482  15 EDELVPLFEKAGPIwdlrLMMDPLSGQNRGYAFITFCNKEAAQEAVKLCDNYEI 68
RRM_RBM22 cd12224
RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This ...
393-448 4.06e-03

RNA recognition motif (RRM) found in Pre-mRNA-splicing factor RBM22 and similar proteins; This subgroup corresponds to the RRM of RBM22 (also known as RNA-binding motif protein 22, or Zinc finger CCCH domain-containing protein 16), a newly discovered RNA-binding motif protein which belongs to the SLT11 gene family. SLT11 gene encoding protein (Slt11p) is a splicing factor in yeast, which is required for spliceosome assembly. Slt11p has two distinct biochemical properties: RNA-annealing and RNA-binding activities. RBM22 is the homolog of SLT11 in vertebrate. It has been reported to be involved in pre-splicesome assembly and to interact with the Ca2+-signaling protein ALG-2. It also plays an important role in embryogenesis. RBM22 contains a conserved RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a zinc finger of the unusual type C-x8-C-x5-C-x3-H, and a C-terminus that is unusually rich in the amino acids Gly and Pro, including sequences of tetraprolines.


Pssm-ID: 409671 [Multi-domain]  Cd Length: 74  Bit Score: 36.49  E-value: 4.06e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   393 RTLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKsKGIAYIEFKTEADAEKTFEE 448
Cdd:cd12224   2 TTLYVGGLGDKITEKDLRDHFYQFGEIRSITVVAR-QQCAFVQFTTRQAAERAAER 56
RRM1_U1A_like cd12246
RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily ...
394-463 4.08e-03

RNA recognition motif 1 (RRM1) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM1 of U1A/U2B"/SNF protein family which contains Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs), connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. Moreover, U2B" does not require an auxiliary protein for binding to RNA, and its nuclear transport is independent of U2 snRNA binding.


Pssm-ID: 409692 [Multi-domain]  Cd Length: 78  Bit Score: 36.74  E-value: 4.08e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   394 TLLAKNLPYKVTQDELK----EVFEDAAEIR--LVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12246   1 TLYINNLNEKIKKDELKrslyALFSQFGPVLdiVASKSLKMRGQAFVVFKDVESATNALRALQGFPFYGKPMRIQY 76
RRM2_CoAA cd12609
RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator ...
492-557 4.22e-03

RNA recognition motif 2 (RRM2) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM2 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410021 [Multi-domain]  Cd Length: 68  Bit Score: 36.37  E-value: 4.22e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   492 NLSYSATEETLQEVFEkaTFIKVPQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12609   7 NVSATCTSDELRGLFE--EFGRVVECD--KVKDYAFVHMEREEEALAAIEALNGKEVKGRRINVEL 68
RRM1_Prp24 cd12296
RNA recognition motif 1 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
394-460 4.34e-03

RNA recognition motif 1 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM1 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409737 [Multi-domain]  Cd Length: 71  Bit Score: 36.48  E-value: 4.34e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIR-LVSKDGKSKGIAYIEFKT--EADAEKTfeeKQGTEIDGRSIS 460
Cdd:cd12296   2 TVLVKNLPKSITENKIRQFFKDCGEIReVKILESGNGLVAVIEFETedEALAALT---KDHKRIGGNEIS 68
RRM1_Hu cd12650
RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to ...
395-463 4.35e-03

RNA recognition motif 1 (RRM1) found in the Hu proteins family; This subfamily corresponds to the RRM1 of the Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410053 [Multi-domain]  Cd Length: 77  Bit Score: 36.61  E-value: 4.35e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   395 LLAKNLPYKVTQDELKEVFEDAAEI---RLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12650   3 LIVNYLPQNMTQDEIRSLFSSIGEIescKLIRDKvtGQSLGYGFVNYVDPSDAEKAINTLNGLRLQNKTIKVSY 76
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
309-382 4.42e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 36.65  E-value: 4.42e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   309 LFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRI------GMTRKFGYVDFESAEDLEKALEL-TGLKVFGNEIKLEKP 381
Cdd:cd12397   1 LFVGNLSFETTEEDLR----KHFAPAG-KIRKVRMatfedsGKCKGFAFVDFKEIESATNAVKGpINHSLNGRDLRVEYG 75

                .
gi 189306   382 K 382
Cdd:cd12397  76 E 76
RRM2_hnRNPM_like cd12386
RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) ...
491-557 4.51e-03

RNA recognition motif 2 (RRM2) found in heterogeneous nuclear ribonucleoprotein M (hnRNP M) and similar proteins; This subfamily corresponds to the RRM2 of heterogeneous nuclear ribonucleoprotein M (hnRNP M), myelin expression factor 2 (MEF-2 or MyEF-2 or MST156) and similar proteins. hnRNP M is pre-mRNA binding protein that may play an important role in the pre-mRNA processing. It also preferentially binds to poly(G) and poly(U) RNA homopolymers. hnRNP M is able to interact with early spliceosomes, further influencing splicing patterns of specific pre-mRNAs. It functions as the receptor of carcinoembryonic antigen (CEA) that contains the penta-peptide sequence PELPK signaling motif. In addition, hnRNP M and another splicing factor Nova-1 work together as dopamine D2 receptor (D2R) pre-mRNA-binding proteins. They regulate alternative splicing of D2R pre-mRNA in an antagonistic manner. hnRNP M contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an unusual hexapeptide-repeat region rich in methionine and arginine residues (MR repeat motif). MEF-2 is a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 shows high sequence homology with hnRNP M. It also contains three RRMs, which may be responsible for its ssDNA binding activity.


Pssm-ID: 409820 [Multi-domain]  Cd Length: 74  Bit Score: 36.57  E-value: 4.51e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   491 SNLSYSATEETLQEVFEKATFIK---VPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLEL 557
Cdd:cd12386   4 ANLDYKVGWKKLKEVFKLAGKVVradIREDKDGKSRGMGVVQFEHPIEAVQAISMFNGQMLFDRPMRVKM 73
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
573-641 4.56e-03

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 36.49  E-value: 4.56e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSVR-ARIVTDretgssKGFGFVDFNSEEDAKEA---MEDGEIDGNKVTLDW 641
Cdd:cd12354   2 TVYVGNITKGLTEALLQQTFSpfGQILeVRVFPD------KGYAFIRFDSHEAATHAivsVNGTIINGQAVKCSW 70
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
492-562 4.64e-03

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 36.14  E-value: 4.64e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   492 NLSYSATEETLQEVFEKATFIKVPQNQNGkskgYAFIEFASFEDAKEALNSCNKREIEGRAIRLELqgPRG 562
Cdd:cd12337   6 RLPYRARERDVERFFRGYGRIRDINLKNG----FGFVEFEDPRDADDAVYELNGKELCGERVIVEH--ARG 70
RRM_EWS cd12533
RNA recognition motif (RRM) found in vertebrate Ewing Sarcoma Protein (EWS); This subgroup ...
573-637 4.65e-03

RNA recognition motif (RRM) found in vertebrate Ewing Sarcoma Protein (EWS); This subgroup corresponds to the RRM of EWS, also termed Ewing sarcoma breakpoint region 1 protein, a member of the FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA- and DNA-binding proteins whose expression is altered in cancer. It is a multifunctional protein and may play roles in transcription and RNA processing. EWS is involved in transcriptional regulation by interacting with the preinitiation complex TFIID and the RNA polymerase II (RNAPII) complexes. It is also associated with splicing factors, such as the U1 snRNP protein U1C, suggesting its implication in pre-mRNA splicing. Additionally, EWS has been shown to regulate DNA damage-induced alternative splicing (AS). Like other members in the FET family, EWS contains an N-terminal Ser, Gly, Gln and Tyr-rich region composed of multiple copies of a degenerate hexapeptide repeat motif. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a C2/C2 zinc-finger motif, a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and at least 1 arginine-glycine-glycine (RGG)-repeat region. EWS specifically binds to poly G and poly U RNA. It also binds to the proximal-element DNA of the macrophage-specific promoter of the CSF-1 receptor gene.


Pssm-ID: 409950 [Multi-domain]  Cd Length: 84  Bit Score: 36.74  E-value: 4.65e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFD--GSVR---------ARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKV 637
Cdd:cd12533   2 TIYVQGLNENVTLEELADFFKhcGVVKinkrtgqpmINIYTDKETGKPKGDATVSYEDPPAAKAAVEwfDGkDFQGNKL 80
RRM1_HuB cd12771
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup ...
391-463 4.76e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen B (HuB); This subgroup corresponds to the RRM1 of HuB, also termed ELAV-like protein 2 (ELAV-2), or ELAV-like neuronal protein 1, or nervous system-specific RNA-binding protein Hel-N1 (Hel-N1), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads and is up-regulated during neuronal differentiation of embryonic carcinoma P19 cells. Like other Hu proteins, HuB contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410164 [Multi-domain]  Cd Length: 83  Bit Score: 36.63  E-value: 4.76e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   391 DART-LLAKNLPYKVTQDELKEVFEDAAEI---RLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12771   2 DSKTnLIVNYLPQNMTQEELKSLFGSIGEIescKLVRDKitGQSLGYGFVNYIEPKDAEKAINTLNGLRLQTKTIKVSY 80
RRM2_I_PABPs cd12379
RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This ...
513-553 4.85e-03

RNA recognition motif 2 (RRM2) found found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM2 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is a ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409813 [Multi-domain]  Cd Length: 77  Bit Score: 36.40  E-value: 4.85e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|.
gi 189306   513 KVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAI 553
Cdd:cd12379  33 KVATDENGGSKGYGFVHFETEEAAERAIEKVNGMLLNGKKV 73
RRM4_RBM12 cd12749
RNA recognition motif 4 (RRM4) found in RNA-binding protein 12 (RBM12) and similar proteins; ...
399-462 4.97e-03

RNA recognition motif 4 (RRM4) found in RNA-binding protein 12 (RBM12) and similar proteins; This subgroup corresponds to the RRM4 of RBM12, also termed SH3/WW domain anchor protein in the nucleus (SWAN), which is ubiquitously expressed. It contains five distinct RNA binding motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two proline-rich regions, and several putative transmembrane domains. The biological role of RBM12 remains unclear.


Pssm-ID: 410143 [Multi-domain]  Cd Length: 88  Bit Score: 36.72  E-value: 4.97e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   399 NLPYKVTQDELK------EVFEDAAEIrLVSKDGKSKGIAYIEFKTEADAEKTfEEKQGTEIDGRSISLY 462
Cdd:cd12749   6 NIPYNITKKDVLqflegiGLDENSVQV-LVDNNGQGLGQALVQFKSEDDARKA-ERLHRKKLNGRDAFLH 73
RRM1_RBM47 cd12485
RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This ...
400-454 5.06e-03

RNA recognition motif 1 (RRM1) found in vertebrate RNA-binding protein 47 (RBM47); This subgroup corresponds to the RRM1 of RBM47, a putative RNA-binding protein that shows high sequence homology with heterogeneous nuclear ribonucleoprotein R (hnRNP R) and heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Its biological function remains unclear. Like hnRNP R and hnRNP Q, RBM47 contains two well-defined and one degenerated RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 240929 [Multi-domain]  Cd Length: 78  Bit Score: 36.48  E-value: 5.06e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   400 LPYKVTQDELKEVFEDAA---EIRLVSK-DGKSKGIAYIEFKTEADAEKTFEEKQGTEI 454
Cdd:cd12485   9 IPRDVYEDELVPVFESVGriyEMRLMMDfDGKNRGYAFVMYTQKHEAKRAVRELNNYEI 67
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
492-562 5.25e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 36.49  E-value: 5.25e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   492 NLSYSATEETLQEVFEKATfIK----VPQNQNGKSKGYAFIEFASFEDAKEALnSCNKREIEGRAIRLELQGPRG 562
Cdd:cd12401  12 NLPFNTVQGDLDAIFKDLK-VRsvrlVRDRETDKFKGFCYVEFEDLESLKEAL-EYDGALFEDRPLRVDIAEGRK 84
PLN03134 PLN03134
glycine-rich RNA-binding protein 4; Provisional
485-563 5.29e-03

glycine-rich RNA-binding protein 4; Provisional


Pssm-ID: 178680 [Multi-domain]  Cd Length: 144  Bit Score: 38.10  E-value: 5.29e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306    485 SKTLVLSNLSYSATEETLQEVFekATFIKVPQ------NQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQ 558
Cdd:PLN03134  34 STKLFIGGLSWGTDDASLRDAF--AHFGDVVDakvivdRETGRSRGFGFVNFNDEGAATAAISEMDGKELNGRHIRVNPA 111

                 ....*
gi 189306    559 GPRGS 563
Cdd:PLN03134 112 NDRPS 116
RRM_TRA2B cd12641
RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and ...
405-467 5.34e-03

RNA recognition motif (RRM) found in Transformer-2 protein homolog beta (TRA-2 beta) and similar proteins; This subgroup corresponds to the RRM of TRA2-beta or TRA-2-beta, also termed splicing factor, arginine/serine-rich 10 (SFRS10), or transformer-2 protein homolog B, a mammalian homolog of Drosophila transformer-2 (Tra2). TRA2-beta is a serine/arginine-rich (SR) protein that controls the pre-mRNA alternative splicing of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. It contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), flanked by the N- and C-terminal arginine/serine (RS)-rich regions. TRA2-beta specifically binds to two types of RNA sequences, the CAA and (GAA)2 sequences, through the RRMs in different RNA binding modes.


Pssm-ID: 410046 [Multi-domain]  Cd Length: 87  Bit Score: 36.52  E-value: 5.34e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   405 TQDELKEVFEDAAEIRLVS-----KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYTGEK 467
Cdd:cd12641  20 TERDLREVFSKYGPIADVSivydqQSRRSRGFAFVYFENVDDAKEAKERANGMELDGRRIRVDFSITK 87
RRM2_Prp24 cd12297
RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
394-464 5.35e-03

RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409738 [Multi-domain]  Cd Length: 78  Bit Score: 36.20  E-value: 5.35e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 189306   394 TLLAKNLPYKVTQDELKEVFED---AAEIRLVS-KDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYYT 464
Cdd:cd12297   2 TLWVTNFPPSYDERSIRDLFGDygvILSVRLPSlRYNTSRRFCYIDFTSPESARAAVELLNGLLEEGYTLVVKIS 76
RRM_ist3_like cd12411
RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ...
471-556 5.37e-03

RNA recognition motif (RRM) found in ist3 family; This subfamily corresponds to the RRM of the ist3 family that includes fungal U2 small nuclear ribonucleoprotein (snRNP) component increased sodium tolerance protein 3 (ist3), X-linked 2 RNA-binding motif proteins (RBMX2) found in Metazoa and plants, and similar proteins. Gene IST3 encoding ist3, also termed U2 snRNP protein SNU17 (Snu17p), is a novel yeast Saccharomyces cerevisiae protein required for the first catalytic step of splicing and for progression of spliceosome assembly. It binds specifically to the U2 snRNP and is an intrinsic component of prespliceosomes and spliceosomes. Yeast ist3 contains an atypical RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). In the yeast pre-mRNA retention and splicing complex, the atypical RRM of ist3 functions as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). Fission yeast Schizosaccharomyces pombe gene cwf29 encoding ist3, also termed cell cycle control protein cwf29, is an RNA-binding protein complexed with cdc5 protein 29. It also contains one RRM. The biological function of RBMX2 remains unclear. It shows high sequence similarity to yeast ist3 protein and harbors one RRM as well.


Pssm-ID: 409845 [Multi-domain]  Cd Length: 89  Bit Score: 36.80  E-value: 5.37e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   471 QDYrggKNSTWsgesktLVLSNLSYSATEETLQEVF----EKATFIKVPQNQNGKSKGYAFIEfasFEDAKE---ALNSC 543
Cdd:cd12411   4 DEY---KDSAY------IYIGGLPYELTEGDILCVFsqygEIVDINLVRDKKTGKSKGFAFLA---YEDQRStilAVDNL 71
                        90
                ....*....|...
gi 189306   544 NKREIEGRAIRLE 556
Cdd:cd12411  72 NGIKLLGRTIRVD 84
RRM_FUS_TAF15 cd12535
RNA recognition motif (RRM) found in vertebrate fused in Ewing's sarcoma protein (FUS), ...
573-637 5.43e-03

RNA recognition motif (RRM) found in vertebrate fused in Ewing's sarcoma protein (FUS), TATA-binding protein-associated factor 15 (TAF15) and similar proteins; This subgroup corresponds to the RRM of FUS and TAF15. FUS (TLS or Pigpen or hnRNP P2), also termed 75 kDa DNA-pairing protein (POMp75), or oncoprotein TLS (Translocated in liposarcoma), is a member of the FET (previously TET) (FUS/TLS, EWS, TAF15) family of RNA- and DNA-binding proteins whose expression is altered in cancer. It is a multi-functional protein and has been implicated in pre-mRNA splicing, chromosome stability, cell spreading, and transcription. FUS was originally identified in human myxoid and round cell liposarcomas as an oncogenic fusion with the stress-induced DNA-binding transcription factor CHOP (CCAAT enhancer-binding homologous protein) and later as hnRNP P2, a component of hnRNP H complex assembled on pre-mRNA. It can form ternary complexes with hnRNP A1 and hnRNP C1/C2. Additional research indicates that FUS binds preferentially to GGUG-containing RNAs. In the presence of Mg2+, it can bind both single- and double-stranded DNA (ssDNA/dsDNA) and promote ATP-independent annealing of complementary ssDNA and D-loop formation in superhelical dsDNA. FUS has been shown to be recruited by single stranded noncoding RNAs to the regulatory regions of target genes such as cyclin D1, where it represses transcription by disrupting complex formation. TAF15 (TAFII68), also termed TATA-binding protein-associated factor 2N (TAF2N), or RNA-binding protein 56 (RBP56), originally identified as a TAF in the general transcription initiation TFIID complex, is a novel RNA/ssDNA-binding protein with homology to the proto-oncoproteins FUS and EWS (also termed EWSR1), belonging to the FET family as well. TAF15 likely functions in RNA polymerase II (RNAP II) transcription by interacting with TFIID and subunits of RNAP II itself. TAF15 is also associated with U1 snRNA, chromatin and RNA, in a complex distinct from the Sm-containing U1 snRNP that functions in splicing. Like other members in the FET family, both FUS and TAF15 contain an N-terminal Ser, Gly, Gln and Tyr-rich region composed of multiple copies of a degenerate hexapeptide repeat motif. The C-terminal region consists of a conserved nuclear import and retention signal (C-NLS), a C2/C2 zinc-finger motif, a conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and at least 1 arginine-glycine-glycine (RGG)-repeat region.


Pssm-ID: 409951 [Multi-domain]  Cd Length: 86  Bit Score: 36.42  E-value: 5.43e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   573 TLFVKGLSEDTTEETLKESFD-----------GSVRARIVTDRETGSSKGFGFVDFNSEEDAKEAME--DG-EIDGNKV 637
Cdd:cd12535   4 TIFVQGLGEDVTIDSVADYFKqigiiktnkktGKPMINLYTDKETGKLKGEATVSFDDPPSAKAAIDwfDGkEFSGNPI 82
RRM1_MYEF2 cd12658
RNA recognition motif 1 (RRM1) found in vertebrate myelin expression factor 2 (MEF-2); This ...
490-556 5.71e-03

RNA recognition motif 1 (RRM1) found in vertebrate myelin expression factor 2 (MEF-2); This subgroup corresponds to the RRM1 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity.


Pssm-ID: 410059 [Multi-domain]  Cd Length: 76  Bit Score: 36.11  E-value: 5.71e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   490 LSNLSY----SATEETLQEVFEKATFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12658   4 ISNIPYdmkwQAIKDLMREKVGEVTYVELFKDAEGKSRGCGVVEFKDEEFVKKALEVMNKYDLSGRPLNIK 74
RRM2_SRSF4 cd12764
RNA recognition motif 2 (RRM2) found in vertebrate serine/arginine-rich splicing factor 4 ...
488-568 5.87e-03

RNA recognition motif 2 (RRM2) found in vertebrate serine/arginine-rich splicing factor 4 (SRSF4); This subgroup corresponds to the RRM2 of SRSF4, also termed pre-mRNA-splicing factor SRp75, or SRP001LB, or splicing factor, arginine/serine-rich 4 (SFRS4), a splicing regulatory serine/arginine (SR) protein that plays an important role in both constitutive splicing and alternative splicing of many pre-mRNAs. For instance, it interacts with heterogeneous nuclear ribonucleoproteins, hnRNP G and hnRNP E2, and further regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia. SFRS4 also induces production of HIV-1 vpr mRNA through the inhibition of the 5'-splice site of exon 3. In addition, SRSF4 activates splicing of the cardiac troponin T (cTNT) alternative exon by direct interactions with the cTNT exon 5 enhancer RNA. SRSF4 can shuttle between the nucleus and cytoplasm. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine-rich region, an internal region homologous to the RRM, and a very long, highly phosphorylated C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410157 [Multi-domain]  Cd Length: 97  Bit Score: 36.66  E-value: 5.87e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIKVPQNQNGKsKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLELQGPrGSPNAR 567
Cdd:cd12764  15 LIVENLSSRCSWQDLKDYMRQAGEVTYADAHKGR-KNEGVIEFVSYSDMKRALEKLDGTEVNGRKIRLVEDKP-GSRRRR 92

                .
gi 189306   568 S 568
Cdd:cd12764  93 S 93
RRM1_RBM40_like cd12238
RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
394-444 5.90e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM1 of RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein), It serves as a bridging factor between the U11 and U12 snRNPs. It contains two repeats of RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions.


Pssm-ID: 409684 [Multi-domain]  Cd Length: 73  Bit Score: 36.07  E-value: 5.90e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   394 TLLAKNLPYKVTQDELKEVFED--AAEIRLVSKDGKSKGIAYIEFKTEADAEK 444
Cdd:cd12238   1 TLLVRHLPPELSEDDKEDLLKHfgATSVRVMKRRGKLKHTAFATFDNEQAASK 53
RRM1_RBM19_MRD1 cd12315
RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple ...
488-556 6.05e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 19 (RBM19), yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM1 of RBM19 and MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409754 [Multi-domain]  Cd Length: 81  Bit Score: 36.37  E-value: 6.05e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   488 LVLSNLSYSATEETLQEVFEKA--------TFIKVPQNQNGKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRLE 556
Cdd:cd12315   3 LIVKNLPLSLDEDQFRRLFSQKckdigltiTDCKLLTKSGGVSRRFGFVGFKDEEDAQKAKEFFNGTYFRTSKVTVE 79
RRM1_hnRNPA_hnRNPD_like cd12325
RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and ...
493-553 6.16e-03

RNA recognition motif 1 (RRM1) found in heterogeneous nuclear ribonucleoprotein hnRNP A and hnRNP D subfamilies and similar proteins; This subfamily corresponds to the RRM1 in the hnRNP A subfamily which includes hnRNP A0, hnRNP A1, hnRNP A2/B1, hnRNP A3 and similar proteins. hnRNP A0 is a low abundance hnRNP protein that has been implicated in mRNA stability in mammalian cells. hnRNP A1 is an abundant eukaryotic nuclear RNA-binding protein that may modulate splice site selection in pre-mRNA splicing. hnRNP A2/B1 is an RNA trafficking response element-binding protein that interacts with the hnRNP A2 response element (A2RE). hnRNP A3 is also a RNA trafficking response element-binding protein that participates in the trafficking of A2RE-containing RNA. The hnRNP A subfamily is characterized by two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a long glycine-rich region at the C-terminus. The hnRNP D subfamily includes hnRNP D0, hnRNP A/B, hnRNP DL and similar proteins. hnRNP D0 is a UUAG-specific nuclear RNA binding protein that may be involved in pre-mRNA splicing and telomere elongation. hnRNP A/B is an RNA unwinding protein with a high affinity for G- followed by U-rich regions. hnRNP A/B has also been identified as an APOBEC1-binding protein that interacts with apolipoprotein B (apoB) mRNA transcripts around the editing site and thus, plays an important role in apoB mRNA editing. hnRNP DL (or hnRNP D-like) is a dual functional protein that possesses DNA- and RNA-binding properties. It has been implicated in mRNA biogenesis at the transcriptional and post-transcriptional levels. All members in this subfamily contain two putative RRMs and a glycine- and tyrosine-rich C-terminus. The family also contains DAZAP1 (Deleted in azoospermia-associated protein 1), RNA-binding protein Musashi homolog Musashi-1, Musashi-2 and similar proteins. They all harbor two RRMs.


Pssm-ID: 409763 [Multi-domain]  Cd Length: 72  Bit Score: 35.96  E-value: 6.16e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 189306   493 LSYSATEETLQEVFEK------ATFIKVPQNqnGKSKGYAFIEFASFEDAKEALNScNKREIEGRAI 553
Cdd:cd12325   6 LSWETTEESLREYFSKygevvdCVVMKDPAT--GRSRGFGFVTFKDPSSVDAVLAA-RPHTLDGRTI 69
RRM_Srp1p_AtRSp31_like cd12233
RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis ...
341-379 6.24e-03

RNA recognition motif (RRM) found in fission yeast pre-mRNA-splicing factor Srp1p, Arabidopsis thaliana arginine/serine-rich-splicing factor RSp31 and similar proteins; This subfamily corresponds to the RRM of Srp1p and RRM2 of plant SR splicing factors. Srp1p is encoded by gene srp1 from fission yeast Schizosaccharomyces pombe. It plays a role in the pre-mRNA splicing process, but is not essential for growth. Srp1p is closely related to the SR protein family found in Metazoa. It contains an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a glycine hinge and a RS domain in the middle, and a C-terminal domain. The family also includes a novel group of arginine/serine (RS) or serine/arginine (SR) splicing factors existing in plants, such as A. thaliana RSp31, RSp35, RSp41 and similar proteins. Like vertebrate RS splicing factors, these proteins function as plant splicing factors and play crucial roles in constitutive and alternative splicing in plants. They all contain two RRMs at their N-terminus and an RS domain at their C-terminus.


Pssm-ID: 240679 [Multi-domain]  Cd Length: 70  Bit Score: 35.88  E-value: 6.24e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|
gi 189306   341 VRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLE 379
Cdd:cd12233  28 VRCDIRKTFAFVEFEDSEDATKALEaLHGSRIDGSVLTVE 67
RRM1_LARP7 cd12290
RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; ...
493-540 6.32e-03

RNA recognition motif 1 (RRM1) found in La-related protein 7 (LARP7) and similar proteins; This subfamily corresponds to the RRM1 of LARP7, also termed La ribonucleoprotein domain family member 7, or P-TEFb-interaction protein for 7SK stability (PIP7S), an oligopyrimidine-binding protein that binds to the highly conserved 3'-terminal U-rich stretch (3' -UUU-OH) of 7SK RNA. LARP7 is a stable component of the 7SK small nuclear ribonucleoprotein (7SK snRNP). It intimately associates with all the nuclear 7SK and is required for 7SK stability. LARP7 also acts as a negative transcriptional regulator of cellular and viral polymerase II genes, acting by means of the 7SK snRNP system. It plays an essential role in the inhibition of positive transcription elongation factor b (P-TEFb)-dependent transcription, which has been linked to the global control of cell growth and tumorigenesis. LARP7 contains a La motif (LAM) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminal region, which mediates binding to the U-rich 3' terminus of 7SK RNA. LARP7 also carries another putative RRM domain at its C-terminus.


Pssm-ID: 409732 [Multi-domain]  Cd Length: 79  Bit Score: 36.15  E-value: 6.32e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|..
gi 189306   493 LSYSATEETLQEVFEK---ATFIKVPQ-NQNGKSKGYAFIEFASFEDAKEAL 540
Cdd:cd12290   7 LPKNATHEWIEAVFSKygeVVYVSIPRyKSTGDPKGFAFIEFETSESAQKAV 58
RRM2_MEI2_like cd12529
RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to ...
394-461 6.69e-03

RNA recognition motif 2 (RRM2) found in plant Mei2-like proteins; This subgroup corresponds to the RRM2 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is highly conserved between plants and fungi. To date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409948 [Multi-domain]  Cd Length: 71  Bit Score: 35.95  E-value: 6.69e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12529   3 TLVVFNLDPSISNDDLHQIFGAYGEIKEIRETPNKRHHKFIEFYDVRSAEAALKALNKSEIAGKRIKL 70
RRM2_TDP43 cd12322
RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar ...
574-642 6.77e-03

RNA recognition motif 2 (RRM2) found in TAR DNA-binding protein 43 (TDP-43) and similar proteins; This subfamily corresponds to the RRM2 of TDP-43 (also termed TARDBP), a ubiquitously expressed pathogenic protein whose normal function and abnormal aggregation are directly linked to the genetic disease cystic fibrosis, and two neurodegenerative disorders: frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). TDP-43 binds both DNA and RNA, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation. TDP-43 is a dimeric protein with two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal glycine-rich domain. The RRMs are responsible for DNA and RNA binding; they bind to TAR DNA and RNA sequences with UG-repeats. The glycine-rich domain can interact with the hnRNP family proteins to form the hnRNP-rich complex involved in splicing inhibition. It is also essential for the cystic fibrosis transmembrane conductance regulator (CFTR) exon 9-skipping activity.


Pssm-ID: 409761 [Multi-domain]  Cd Length: 71  Bit Score: 35.76  E-value: 6.77e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 189306   574 LFVKGLSEDTTEETLKESFDgsvRARIVTDRETGSS-KGFGFVDFNSEEDAKEAM-EDGEIDGNKVTLDWA 642
Cdd:cd12322   3 VFVGRCTEDMTEDDLRQYFS---QFGEVTDVFIPKPfRAFAFVTFADDEVAQSLCgEDHIIKGVSVHISNA 70
RRM2_SRSF4_like cd12600
RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
488-555 6.80e-03

RNA recognition motif 2 (RRM2) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM2 of three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and is essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 410012 [Multi-domain]  Cd Length: 72  Bit Score: 35.90  E-value: 6.80e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   488 LVLSNLSYSATEETLQEVFEKATFIKVPQNQNGKsKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12600   3 LIVENLSSRVSWQDLKDYMRQAGEVTYADAHKQR-KNEGVVEFASYSDMKNAIEKLDGTELNGRKIRL 69
RRM1_HuC cd12772
RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup ...
391-463 6.85e-03

RNA recognition motif 1 (RRM1) found in vertebrate Hu-antigen C (HuC); This subgroup corresponds to the RRM1 of HuC, also termed ELAV-like protein 3 (ELAV-3), or paraneoplastic cerebellar degeneration-associated antigen, or paraneoplastic limbic encephalitis antigen 21 (PLE21), one of the neuronal members of the Hu family. The neuronal Hu proteins play important roles in neuronal differentiation, plasticity and memory. Like other Hu proteins, HuC contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an AU-rich RNA element (ARE). The AU-rich element binding of HuC can be inhibited by flavonoids. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410165 [Multi-domain]  Cd Length: 85  Bit Score: 36.25  E-value: 6.85e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   391 DART-LLAKNLPYKVTQDELKEVFEDAAEI---RLVSKD--GKSKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISLYY 463
Cdd:cd12772   2 DSKTnLIVNYLPQNMTQEEFKSLFGSIGDIescKLVRDKitGQSLGYGFVNYVDPNDADKAINTLNGLKLQTKTIKVSY 80
RRM_SAFB_like cd12417
RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This ...
308-379 6.91e-03

RNA recognition motif (RRM) found in the scaffold attachment factor (SAFB) family; This subfamily corresponds to the RRM domain of the SAFB family, including scaffold attachment factor B1 (SAFB1), scaffold attachment factor B2 (SAFB2), SAFB-like transcriptional modulator (SLTM), and similar proteins, which are ubiquitously expressed. SAFB1, SAFB2 and SLTM have been implicated in many diverse cellular processes including cell growth and transformation, stress response, and apoptosis. They share high sequence similarities and all contain a scaffold attachment factor-box (SAF-box, also known as SAP domain) DNA-binding motif, an RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a region rich in glutamine and arginine residues. SAFB1 is a nuclear protein with a distribution similar to that of SLTM, but unlike that of SAFB2, which is also found in the cytoplasm. To a large extent, SAFB1 and SLTM might share similar functions, such as the inhibition of an oestrogen reporter gene. The additional cytoplasmic localization of SAFB2 implies that it could play additional roles in the cytoplasmic compartment which are distinct from the nuclear functions shared with SAFB1 and SLTM.


Pssm-ID: 409851 [Multi-domain]  Cd Length: 74  Bit Score: 35.69  E-value: 6.91e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   308 NLFVGNLNFNKSAPELKtgisDVFAKNDLA-----VVDVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLE 379
Cdd:cd12417   1 NLWISGLSDTTKAADLK----KIFSKYGKVvsakvVTSARTPGSRCYGYVTMASVEEADLCIKsLNKTELHGRVITVE 74
hnRNP-R-Q TIGR01648
heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the ...
309-495 7.44e-03

heterogeneous nuclear ribonucleoprotein R, Q family; Sequences in this subfamily include the human heterogeneous nuclear ribonucleoproteins (hnRNP) R, Q, and APOBEC-1 complementation factor (aka APOBEC-1 stimulating protein). These proteins contain three RNA recognition domains (rrm: pfam00076) and a somewhat variable C-terminal domain.


Pssm-ID: 273732 [Multi-domain]  Cd Length: 578  Bit Score: 39.60  E-value: 7.44e-03
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     309 LFVGNLNFNKSAPElktgISDVFAKNDLAVVDVRI-------GMTRKFGYVDFES---AEDLEKALELTGLKVFGNEIKL 378
Cdd:TIGR01648 141 LFVGGIPKNKKREE----ILEEFSKVTEGVVDVIVyhsaadkKKNRGFAFVEYEShraAAMARRKLMPGRIQLWGHVIAV 216
                          90       100       110       120       130       140       150       160
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306     379 E--KPKGK-DSKKERDARTLLAKNLPYKVTQDELKEVFEDAAEIRlVSKDGKSKGIAYIEFKTEADAEKTFEEKQGTEID 455
Cdd:TIGR01648 217 DwaEPEEEvDEDVMAKVKILYVRNLMTTTTEEIIEKSFSEFKPGK-VERVKKIRDYAFVHFEDREDAVKAMDELNGKELE 295
                         170       180       190       200
                  ....*....|....*....|....*....|....*....|
gi 189306     456 GRSISLYYTGEKGQNQDYRGGKNSTWSGESKTLVLSNLSY 495
Cdd:TIGR01648 296 GSEIEVTLAKPVDKKSYVRYTRGTGGRGKERQAARQSLGQ 335
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
394-457 7.79e-03

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 36.05  E-value: 7.79e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 189306   394 TLLAKNLPYKVTQDELKEVF----------EDAAEIRLVsKDGKSKGIAYIEFKTEADAEKTFEEKQGTEIDGR 457
Cdd:cd12239   3 RLYVKNLSKRVSEKDLKYIFgrfvdssseeKNMFDIRLM-TEGRMKGQAFITFPSEELAEKALNLTNGYVLHGK 75
RRM_G3BP cd12229
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, ...
309-365 7.99e-03

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, G3BP2 and similar proteins; This subfamily corresponds to the RRM domain in the G3BP family of RNA-binding and SH3 domain-binding proteins. G3BP acts at the level of RNA metabolism in response to cell signaling, possibly as RNA transcript stabilizing factors or an RNase. Members include G3BP1, G3BP2 and similar proteins. These proteins associate directly with the SH3 domain of GTPase-activating protein (GAP), which functions as an inhibitor of Ras. They all contain an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing PXXP motif(s), an RNA recognition motif (RRM), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif).


Pssm-ID: 409676 [Multi-domain]  Cd Length: 81  Bit Score: 35.85  E-value: 7.99e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 189306   309 LFVGNLNFNKSAPELKtgisDVFAKNDlAVVDVRIGMTR------KFGYVDFESAEDLEKALE 365
Cdd:cd12229   6 LFVGNLPHDITEDELK----EFFSRFG-NVLELRINSKGgggrlpNFGFVVFDDPEAVQKILA 63
RRM2_MYEF2 cd12660
RNA recognition motif 2 (RRM2) found in vertebrate myelin expression factor 2 (MEF-2); This ...
394-442 8.22e-03

RNA recognition motif 2 (RRM2) found in vertebrate myelin expression factor 2 (MEF-2); This subgroup corresponds to the RRM2 of MEF-2, also termed MyEF-2 or MST156, a sequence-specific single-stranded DNA (ssDNA) binding protein that binds specifically to ssDNA derived from the proximal (MB1) element of the myelin basic protein (MBP) promoter and represses transcription of the MBP gene. MEF-2 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may be responsible for its ssDNA binding activity.


Pssm-ID: 410061 [Multi-domain]  Cd Length: 76  Bit Score: 35.76  E-value: 8.22e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|...
gi 189306   394 TLLAKNLPYKVTQDELKEVFEDAAEIRLV----SKDGKSKGIAYIEFKTEADA 442
Cdd:cd12660   2 TIFVANLDFKVGWKKLKEVFSMAGTVKRAdikeDKDGKSRGMGTVTFEQAIEA 54
RRM4_MRD1 cd12319
RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 ...
394-461 8.57e-03

RNA recognition motif 4 (RRM4) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subfamily corresponds to the RRM4 of MRD1which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). MRD1 is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. It contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409758 [Multi-domain]  Cd Length: 84  Bit Score: 35.92  E-value: 8.57e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   394 TLLAKNLPYKVTQDELKEVF---EDAAEIRLVSK-DGK------SKGIAYIEFKTEADAEKTFEEKQGTEIDGRSISL 461
Cdd:cd12319   2 TLFVKNLNFSTTNQHLTDVFkhlDGFVFARVKTKpDPKrpgktlSMGFGFVGFKTKEQAQAALKAMDGFVLDGHKLEV 79
RRM_NCBP2 cd12240
RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar ...
399-459 8.96e-03

RNA recognition motif (RRM) found in nuclear cap-binding protein subunit 2 (CBP20) and similar proteins; This subfamily corresponds to the RRM of CBP20, also termed nuclear cap-binding protein subunit 2 (NCBP2), or cell proliferation-inducing gene 55 protein, or NCBP-interacting protein 1 (NIP1). CBP20 is the small subunit of the nuclear cap binding complex (CBC), which is a conserved eukaryotic heterodimeric protein complex binding to 5'-capped polymerase II transcripts and plays a central role in the maturation of pre-mRNA and uracil-rich small nuclear RNA (U snRNA). CBP20 is most likely responsible for the binding of capped RNA. It contains an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and interacts with the second and third domains of CBP80, the large subunit of CBC.


Pssm-ID: 409686 [Multi-domain]  Cd Length: 78  Bit Score: 35.63  E-value: 8.96e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 189306   399 NLPYKVTQDELKEVFEDAAEI-RLVSKDGKSK----GIAYIEFKTEADAEKTFEEKQGTEIDGRSI 459
Cdd:cd12240   5 NLSFYTTEEQIYELFSKCGDIkRIIMGLDKFKktpcGFCFVEYYSREDAENAVKYLNGTKLDDRII 70
RRM1_PUF60 cd12370
RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; ...
493-555 9.43e-03

RNA recognition motif 1 (RRM1) found in (U)-binding-splicing factor PUF60 and similar proteins; This subfamily corresponds to the RRM1 of PUF60, also termed FUSE-binding protein-interacting repressor (FBP-interacting repressor or FIR), or Ro-binding protein 1 (RoBP1), or Siah-binding protein 1 (Siah-BP1). PUF60 is an essential splicing factor that functions as a poly-U RNA-binding protein required to reconstitute splicing in depleted nuclear extracts. Its function is enhanced through interaction with U2 auxiliary factor U2AF65. PUF60 also controls human c-myc gene expression by binding and inhibiting the transcription factor far upstream sequence element (FUSE)-binding-protein (FBP), an activator of c-myc promoters. PUF60 contains two central RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal U2AF (U2 auxiliary factor) homology motifs (UHM) that harbors another RRM and binds to tryptophan-containing linear peptide motifs (UHM ligand motifs, ULMs) in several nuclear proteins. Research indicates that PUF60 binds FUSE as a dimer, and only the first two RRM domains participate in the single-stranded DNA recognition.


Pssm-ID: 409805 [Multi-domain]  Cd Length: 76  Bit Score: 35.47  E-value: 9.43e-03
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   493 LSYSATEETLQEVFEKATFIKV------PQNQngKSKGYAFIEFASFEDAKEALNSCNKREIEGRAIRL 555
Cdd:cd12370   8 IYFELGEDTIRQAFAPFGPIKSidmswdPVTM--KHKGFAFVEYEVPEAAQLALEQMNGVMLGGRNIKV 74
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
585-628 9.62e-03

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 35.63  E-value: 9.62e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|....*..
gi 189306   585 EETLKESFD--GSV-RARIVTDRETGSSKGFGFVDFNSEEDAKEAME 628
Cdd:cd12307  13 EPELRKYFSqfGTVtRLRLSRSKKTGKSKGYAFVEFEDPEVAKIVAE 59
RRM1_PSRP2_like cd21609
RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 ...
309-381 9.73e-03

RNA recognition motif 1 (RRM1) found in chloroplastic plastid-specific 30S ribosomal protein 2 (PSRP-2) and similar proteins; PSRP-2, also called chloroplastic 30S ribosomal protein 2, or chloroplastic small ribosomal subunit protein cS22, is a component of the chloroplast ribosome (chloro-ribosome), a dedicated translation machinery responsible for the synthesis of chloroplast genome-encoded proteins, including proteins of the transcription and translation machinery and components of the photosynthetic apparatus. It binds single strand DNA (ssDNA) and RNA in vitro. It exhibits RNA chaperone activity and regulates negatively resistance responses to abiotic stresses during seed germination (e.g. salt, dehydration, and low temperature) and seedling growth (e.g. salt). The family also includes Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (AtCP31A). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. Members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410188 [Multi-domain]  Cd Length: 80  Bit Score: 35.47  E-value: 9.73e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 189306   309 LFVGNLNFNKSAPELktgiSDVFAKNDLA-----VVDVRIGMTRKFGYVDFESAEDLEKALE-LTGLKVFGNEIKLEKP 381
Cdd:cd21609   2 LYVGNIPRNVTSEEL----AKIFEEAGTVeiaevMYDRYTGRSRGFGFVTMGSVEDAKAAIEkLNGTEVGGREIKVNIT 76
RRM1_MSI1 cd12759
RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and ...
574-640 9.85e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein Musashi homolog 1 (Musashi-1) and similar proteins; This subgroup corresponds to the RRM1 of Musashi-1. The mammalian MSI1 gene encoding Musashi-1 (also termed Msi1) is a neural RNA-binding protein putatively expressed in central nervous system (CNS) stem cells and neural progenitor cells and associated with asymmetric divisions in neural progenitor cells. Musashi-1 is evolutionarily conserved from invertebrates to vertebrates. It is a homolog of Drosophila Musashi and Xenopus laevis nervous system-specific RNP protein-1 (Nrp-1). Musashi-1 has been implicated in the maintenance of the stem-cell state, differentiation, and tumorigenesis. It translationally regulates the expression of a mammalian numb gene by binding to the 3'-untranslated region of mRNA of Numb, encoding a membrane-associated inhibitor of Notch signaling, and further influences neural development. Moreover, it represses translation by interacting with the poly(A)-binding protein and competes for binding of the eukaryotic initiation factor-4G (eIF-4G). Musashi-1 contains two conserved N-terminal tandem RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), along with other domains of unknown function.


Pssm-ID: 241203 [Multi-domain]  Cd Length: 77  Bit Score: 35.75  E-value: 9.85e-03
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 189306   574 LFVKGLSEDTTEETLKESFD--GSVRARIVT-DRETGSSKGFGFVDFNSEEDAKEAMEDGEIDGNKVTLD 640
Cdd:cd12759   3 MFIGGLSWQTTQEGLREYFGqfGEVKECLVMrDPLTKRSRGFGFVTFMDQAGVDKVLAQSRHELDSKTID 72
RRM1_2_CELF1-6_like cd12361
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding ...
493-544 9.90e-03

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in CELF/Bruno-like family of RNA binding proteins and plant flowering time control protein FCA; This subfamily corresponds to the RRM1 and RRM2 domains of the CUGBP1 and ETR-3-like factors (CELF) as well as plant flowering time control protein FCA. CELF, also termed BRUNOL (Bruno-like) proteins, is a family of structurally related RNA-binding proteins involved in regulation of pre-mRNA splicing in the nucleus, and control of mRNA translation and deadenylation in the cytoplasm. The family contains six members: CELF-1 (also known as BRUNOL-2, CUG-BP1, NAPOR, EDEN-BP), CELF-2 (also known as BRUNOL-3, ETR-3, CUG-BP2, NAPOR-2), CELF-3 (also known as BRUNOL-1, TNRC4, ETR-1, CAGH4, ER DA4), CELF-4 (BRUNOL-4), CELF-5 (BRUNOL-5) and CELF-6 (BRUNOL-6). They all contain three highly conserved RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains): two consecutive RRMs (RRM1 and RRM2) situated in the N-terminal region followed by a linker region and the third RRM (RRM3) close to the C-terminus of the protein. The low sequence conservation of the linker region is highly suggestive of a large variety in the co-factors that associate with the various CELF family members. Based on both, sequence similarity and function, the CELF family can be divided into two subfamilies, the first containing CELFs 1 and 2, and the second containing CELFs 3, 4, 5, and 6. The different CELF proteins may act through different sites on at least some substrates. Furthermore, CELF proteins may interact with each other in varying combinations to influence alternative splicing in different contexts. This subfamily also includes plant flowering time control protein FCA that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RRMs, and a WW protein interaction domain.


Pssm-ID: 409796 [Multi-domain]  Cd Length: 77  Bit Score: 35.68  E-value: 9.90e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 189306   493 LSYSATEETLQEVFEK------ATFIKVPQNqnGKSKGYAFIEFASFEDAKEALNSCN 544
Cdd:cd12361   7 IPKTASEEDVRPLFEQfgnieeVQILRDKQT--GQSKGCAFVTFSTREEALRAIEALH 62
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH