formin homology family protein is a cytoskeletal remodeling protein that may be involved a diverse array of cellular functions including the regulation of actin dynamics as well as the stability and organization of microtubules
Formin Homology 2 Domain; FH proteins control rearrangements of the actin cytoskeleton, ...
602-1024
5.04e-102
Formin Homology 2 Domain; FH proteins control rearrangements of the actin cytoskeleton, especially in the context of cytokinesis and cell polarisation. Members of this family have been found to interact with Rho-GTPases, profilin and other actin-assoziated proteins. These interactions are mediated by the proline-rich FH1 domain, usually located in front of FH2 (but not listed in SMART). Despite this cytosolic function, vertebrate formins have been assigned functions within the nucleus. A set of Formin-Binding Proteins (FBPs) has been shown to bind FH1 with their WW domain.
Pssm-ID: 214697 [Multi-domain] Cd Length: 392 Bit Score: 326.23 E-value: 5.04e-102
The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins; BAR domains are dimerization, lipid ...
332-422
8.36e-04
The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.
Pssm-ID: 153280 [Multi-domain] Cd Length: 218 Bit Score: 41.96 E-value: 8.36e-04
Formin Homology 2 Domain; FH proteins control rearrangements of the actin cytoskeleton, ...
602-1024
5.04e-102
Formin Homology 2 Domain; FH proteins control rearrangements of the actin cytoskeleton, especially in the context of cytokinesis and cell polarisation. Members of this family have been found to interact with Rho-GTPases, profilin and other actin-assoziated proteins. These interactions are mediated by the proline-rich FH1 domain, usually located in front of FH2 (but not listed in SMART). Despite this cytosolic function, vertebrate formins have been assigned functions within the nucleus. A set of Formin-Binding Proteins (FBPs) has been shown to bind FH1 with their WW domain.
Pssm-ID: 214697 [Multi-domain] Cd Length: 392 Bit Score: 326.23 E-value: 5.04e-102
The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins; BAR domains are dimerization, lipid ...
332-422
8.36e-04
The Bin/Amphiphysin/Rvs (BAR) domain of Sorting Nexins; BAR domains are dimerization, lipid binding and curvature sensing modules found in many different proteins with diverse functions. Sorting nexins (SNXs) are Phox homology (PX) domain containing proteins that are involved in regulating membrane traffic and protein sorting in the endosomal system. SNXs differ from each other in their lipid-binding specificity, subcellular localization and specific function in the endocytic pathway. A subset of SNXs also contain BAR domains. The PX-BAR structural unit determines the specific membrane targeting of SNXs. BAR domains form dimers that bind to membranes, induce membrane bending and curvature, and may also be involved in protein-protein interactions.
Pssm-ID: 153280 [Multi-domain] Cd Length: 218 Bit Score: 41.96 E-value: 8.36e-04
Nuf2, DHR10-like domain; This domain is found at the C-terminal region of Nuf2 proteins. This ...
342-422
7.58e-03
Nuf2, DHR10-like domain; This domain is found at the C-terminal region of Nuf2 proteins. This domain was identified as MazG related domain also designated as Designed helical repeat protein 10 (DHR10) that actually adopts a coiled-coil structure. Nuf2 is part of the Ndc80 complex, which binds to the spindle and is required for chromosome segregation and spindle checkpoint activity.
Pssm-ID: 465814 [Multi-domain] Cd Length: 117 Bit Score: 37.56 E-value: 7.58e-03
Growth-arrest specific micro-tubule binding; This family is the highly conserved central ...
360-422
8.81e-03
Growth-arrest specific micro-tubule binding; This family is the highly conserved central region of a number of metazoan proteins referred to as growth-arrest proteins. In mouse, Gas8 is predominantly a testicular protein, whose expression is developmentally regulated during puberty and spermatogenesis. In humans, it is absent in infertile males who lack the ability to generate gametes. The localization of Gas8 in the motility apparatus of post-meiotic gametocytes and mature spermatozoa, together with the detection of Gas8 also in cilia at the apical surfaces of epithelial cells lining the pulmonary bronchi and Fallopian tubes suggests that the Gas8 protein may have a role in the functioning of motile cellular appendages. Gas8 is a microtubule-binding protein localized to regions of dynein regulation in mammalian cells.
Pssm-ID: 464001 [Multi-domain] Cd Length: 200 Bit Score: 38.73 E-value: 8.81e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options