ROCK1 protein [Homo sapiens]
C1 domain-containing protein( domain architecture ID 3571)
C1 (protein kinase C conserved region 1) domain-containing protein similar to Homo sapiens differentially expressed in FDCP 8 homolog isoform 2
List of domain hits
Name | Accession | Description | Interval | E-value | ||
C1 super family | cl00040 | protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ... |
11-79 | 1.07e-43 | ||
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme. The actual alignment was detected with superfamily member cd20874: Pssm-ID: 412127 Cd Length: 69 Bit Score: 137.07 E-value: 1.07e-43
|
||||||
Name | Accession | Description | Interval | E-value | ||
C1_ROCK1 | cd20874 | protein kinase C conserved region 1 (C1 domain) found in Rho-associated coiled-coil containing ... |
11-79 | 1.07e-43 | ||
protein kinase C conserved region 1 (C1 domain) found in Rho-associated coiled-coil containing protein kinase 1 (ROCK1) and similar proteins; ROCK1 is a serine/threonine kinase, catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ROCK1, also called Rho-associated protein kinase 1, renal carcinoma antigen NY-REN-35, Rho-associated, coiled-coil-containing protein kinase I (ROCK-I), p160 ROCK-1, or p160ROCK, is preferentially expressed in the liver, lung, spleen, testes, and kidney. It mediates signaling from Rho to the actin cytoskeleton. It is implicated in the development of cardiac fibrosis, cardiomyocyte apoptosis, and hyperglycemia. Mice deficient with ROCK1 display eyelids open at birth (EOB) and omphalocele phenotypes due to the disorganization of actin filaments in the eyelids and the umbilical ring. ROCK proteins contain an N-terminal extension, a catalytic kinase domain, and a C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD), a pleckstrin homology (PH) domain and a C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410424 Cd Length: 69 Bit Score: 137.07 E-value: 1.07e-43
|
||||||
C1 | smart00109 | Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ... |
18-64 | 1.60e-05 | ||
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. Pssm-ID: 197519 Cd Length: 50 Bit Score: 39.37 E-value: 1.60e-05
|
||||||
Name | Accession | Description | Interval | E-value | ||
C1_ROCK1 | cd20874 | protein kinase C conserved region 1 (C1 domain) found in Rho-associated coiled-coil containing ... |
11-79 | 1.07e-43 | ||
protein kinase C conserved region 1 (C1 domain) found in Rho-associated coiled-coil containing protein kinase 1 (ROCK1) and similar proteins; ROCK1 is a serine/threonine kinase, catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ROCK1, also called Rho-associated protein kinase 1, renal carcinoma antigen NY-REN-35, Rho-associated, coiled-coil-containing protein kinase I (ROCK-I), p160 ROCK-1, or p160ROCK, is preferentially expressed in the liver, lung, spleen, testes, and kidney. It mediates signaling from Rho to the actin cytoskeleton. It is implicated in the development of cardiac fibrosis, cardiomyocyte apoptosis, and hyperglycemia. Mice deficient with ROCK1 display eyelids open at birth (EOB) and omphalocele phenotypes due to the disorganization of actin filaments in the eyelids and the umbilical ring. ROCK proteins contain an N-terminal extension, a catalytic kinase domain, and a C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD), a pleckstrin homology (PH) domain and a C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410424 Cd Length: 69 Bit Score: 137.07 E-value: 1.07e-43
|
||||||
C1_ROCK2 | cd20875 | protein kinase C conserved region 1 (C1 domain) found in Rho-associated coiled-coil containing ... |
8-77 | 2.45e-37 | ||
protein kinase C conserved region 1 (C1 domain) found in Rho-associated coiled-coil containing protein kinase 2 (ROCK2) and similar proteins; ROCK2 is a serine/threonine kinase, catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. ROCK2, also called Rho-associated protein kinase 2, Rho kinase 2, Rho-associated, coiled-coil-containing protein kinase II (ROCK-II), or p164 ROCK-2, was the first identified target of activated RhoA, and was found to play a role in stress fiber and focal adhesion formation. It is prominently expressed in the brain, heart, and skeletal muscles. It is implicated in vascular and neurological disorders, such as hypertension and vasospasm of the coronary and cerebral arteries. ROCK2 is also activated by caspase-2 cleavage, resulting in thrombin-induced microparticle generation in response to cell activation. Mice deficient in ROCK2 show intrauterine growth retardation and embryonic lethality because of placental dysfunction. ROCK proteins contain an N-terminal extension, a catalytic kinase domain, and a C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD), a pleckstrin homology (PH) domain and a C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410425 Cd Length: 71 Bit Score: 120.91 E-value: 2.45e-37
|
||||||
C1_ROCK | cd20813 | protein kinase C conserved region 1 (C1 domain) found in the Rho-associated coiled-coil ... |
14-75 | 5.78e-30 | ||
protein kinase C conserved region 1 (C1 domain) found in the Rho-associated coiled-coil containing protein kinase (ROCK) family; ROCK is a serine/threonine protein kinase, catalyzing the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. It is also referred to as Rho-associated kinase or simply as Rho kinase. It contains an N-terminal extension, a catalytic kinase domain, and a C-terminal extension, which contains a coiled-coil region encompassing a Rho-binding domain (RBD), a pleckstrin homology (PH) domain and a C1 domain. ROCK is auto-inhibited by the RBD and PH domain interacting with the catalytic domain. It is activated via interaction with Rho GTPases and is involved in many cellular functions including contraction, adhesion, migration, motility, proliferation, and apoptosis. The ROCK subfamily consists of two isoforms, ROCK1 and ROCK2, which may be functionally redundant in some systems, but exhibit different tissue distributions. Both isoforms are ubiquitously expressed in most tissues, but ROCK2 is more prominent in brain and skeletal muscle while ROCK1 is more pronounced in the liver, testes, and kidney. Studies in knockout mice result in different phenotypes, suggesting that the two isoforms do not compensate for each other during embryonic development. This model corresponds to C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410363 Cd Length: 65 Bit Score: 101.96 E-value: 5.78e-30
|
||||||
C1 | smart00109 | Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol ... |
18-64 | 1.60e-05 | ||
Protein kinase C conserved region 1 (C1) domains (Cysteine-rich domains); Some bind phorbol esters and diacylglycerol. Some bind RasGTP. Zinc-binding domains. Pssm-ID: 197519 Cd Length: 50 Bit Score: 39.37 E-value: 1.60e-05
|
||||||
C1 | cd00029 | protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich ... |
18-64 | 3.74e-05 | ||
protein kinase C conserved region 1 (C1 domain) superfamily; The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains. It contains the motif HX12CX2CXnCX2CX4HX2CX7C, where C and H are cysteine and histidine, respectively; X represents other residues; and n is either 13 or 14. C1 has a globular fold with two separate Zn(2+)-binding sites. It was originally discovered as lipid-binding modules in protein kinase C (PKC) isoforms. C1 domains that bind and respond to phorbol esters (PE) and diacylglycerol (DAG) are referred to as typical, and those that do not respond to PE and DAG are deemed atypical. A C1 domain may also be referred to as PKC or non-PKC C1, based on the parent protein's activity. Most C1 domain-containing non-PKC proteins act as lipid kinases and scaffolds, except PKD which acts as a protein kinase. PKC C1 domains play roles in membrane translocation and activation of the enzyme. Pssm-ID: 410341 Cd Length: 50 Bit Score: 38.27 E-value: 3.74e-05
|
||||||
C1_p190RhoGEF-like | cd20815 | protein kinase C conserved region 1 (C1 domain) found in the 190 kDa guanine nucleotide ... |
16-58 | 2.70e-04 | ||
protein kinase C conserved region 1 (C1 domain) found in the 190 kDa guanine nucleotide exchange factor (p190RhoGEF)-like family; The p190RhoGEF-like protein family includes p190RhoGEF, Rho guanine nucleotide exchange factor 2 (ARHGEF2), A-kinase anchor protein 13 (AKAP-13) and similar proteins. p190RhoGEF is a brain-enriched, RhoA-specific guanine nucleotide exchange factor that regulates signaling pathways downstream of integrins and growth factor receptors. It is involved in axonal branching, synapse formation and dendritic morphogenesis, as well as in focal adhesion formation, cell motility and B-lymphocytes activation. ARHGEF2 acts as a guanine nucleotide exchange factor (GEF) that activates Rho-GTPases by promoting the exchange of GDP for GTP. It is thought to play a role in actin cytoskeleton reorganization in different tissues since its activation induces formation of actin stress fibers. AKAP-13 is a scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. It activates RhoA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor. It may also activate other Rho family members. AKAP-13 plays a role in cell growth, cell development and actin fiber formation. Members of this family share a common domain architecture containing C1, RhoGEF or Dbl-homologous (DH), and Pleckstrin Homology (PH) domains. Some members may contain additional domains such as the DUF5401 domain. This model describes the C1 domain. The C1 domain is a cysteine-rich zinc binding domain that does not bind DNA nor possess structural similarity to conventional zinc finger domains; it contains two separate Zn(2+)-binding sites. Pssm-ID: 410365 Cd Length: 54 Bit Score: 36.24 E-value: 2.70e-04
|
||||||
Blast search parameters | ||||
|