NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|383292889|gb|AFH06577|]
View 

cap-n-collar, isoform J [Drosophila melanogaster]

Protein Classification

cap'n'collar family bZIP transcription factor( domain architecture ID 10200241)

cap'n'collar (CNC) family basic leucine zipper (bZIP) transcription factor binds to the promoter regions of genes to control their expression; similar to Drosophila melanogaster cap-n-collar that functions during development and/or contribute in maintaining homeostasis during stress responses

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
1192-1259 1.04e-34

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


:

Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 126.98  E-value: 1.04e-34
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 383292889 1192 QLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRISNKFAMLH 1259
Cdd:cd14698     1 QLQLIRDIRRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQLY 68
 
Name Accession Description Interval E-value
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
1192-1259 1.04e-34

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 126.98  E-value: 1.04e-34
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 383292889 1192 QLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRISNKFAMLH 1259
Cdd:cd14698     1 QLQLIRDIRRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQLY 68
bZIP_Maf pfam03131
bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region ...
1166-1259 1.53e-21

bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer.


Pssm-ID: 427158 [Multi-domain]  Cd Length: 92  Bit Score: 90.48  E-value: 1.53e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 383292889  1166 ISVPDIINLPMDEFNERLskYDLSENQLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLE 1245
Cdd:pfam03131    1 LSDEELLSMSVREFNRFL--RGLTEEEVIRLKQRRRRLKNRGYAQSCRKRRLQQKESLEKERSELREQLERLVQELSRLR 78
                           90
                   ....*....|....
gi 383292889  1246 SERKRISNKFAMLH 1259
Cdd:pfam03131   79 QELDALKRRNEQLQ 92
BRLZ smart00338
basic region leucin zipper;
1196-1256 1.87e-11

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 60.66  E-value: 1.87e-11
                            10        20        30        40        50        60
                    ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 383292889   1196 IRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRISNKFA 1256
Cdd:smart00338    4 EKRRRRRERNREAARRSRERKKAEIEELERKVEQLEAENERLKKEIERLRRELEKLKSELE 64
 
Name Accession Description Interval E-value
bZIP_CNC cd14698
Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding ...
1192-1259 1.04e-34

Basic leucine zipper (bZIP) domain of Cap'n'Collar (CNC) transcription factors: a DNA-binding and dimerization domain; CNC proteins form a subfamily of Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. This subfamily includes Drosophila Cnc and four vertebrate counterparts, NFE2 (nuclear factor, erythroid-derived 2), NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). It also includes BACH1 and BACH2, which contain an additional BTB domain (Broad complex###Tramtrack###Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain). CNC proteins function during development and/or contribute in maintaining homeostasis during stress responses. In flies, Cnc functions both in development and in stress responses. In vertebrates, several CNC proteins encoded by distinct genes show varying functions and expression patterns. NFE2 is required for the proper development of platelets while the three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269846 [Multi-domain]  Cd Length: 68  Bit Score: 126.98  E-value: 1.04e-34
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 383292889 1192 QLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRISNKFAMLH 1259
Cdd:cd14698     1 QLQLIRDIRRRGKNKVAAQNCRKRKLDQISTLEDEVDELKEEKEKLLKERDELEAETREMKDKYSQLY 68
bZIP_NFE2-like cd14720
Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar ...
1192-1253 5.30e-24

Basic leucine zipper (bZIP) domain of Nuclear Factor, Erythroid-derived 2 (NFE2) and similar proteins: a DNA-binding and dimerization domain; This subfamily is composed of NFE2 and NFE2-like proteins including NFE2-like 1 or NFE2-related factor 1 (NFE2L1 or Nrf1), NFE2L2 (or Nrf2), and NFE2L3 (or Nrf3). These are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. NFE2 functions in development; it is required for the proper development of platelets. The three Nrfs function in stress responses. Nrf2, the most extensively studied member of this subfamily, acts as a xenobiotic-activated receptor that regulates the adaptive response to oxidants and electrophiles. As the master regulator of the antioxidant defense pathway, it plays roles in the biology of inflammation, obesity, and cancer. Nrf1 is an essential protein that binds to the antioxidant response element (ARE) and is also involved in regulating oxidative stress. In addition, it also regulates genes involved in cell and tissue differentiation, inflammation, and hepatocyte homeostasis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269868 [Multi-domain]  Cd Length: 68  Bit Score: 96.60  E-value: 5.30e-24
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 383292889 1192 QLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNavvkrktQLNQDRDHLESERKRISN 1253
Cdd:cd14720     1 QLALIRDIRRRGKNKVAAQNCRKRKLDNIVGLEDEVE-------QLQRQREKLLREKAENAK 55
bZIP_Maf pfam03131
bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region ...
1166-1259 1.53e-21

bZIP Maf transcription factor; Maf transcription factors contain a conserved basic region leucine zipper (bZIP) domain, which mediates their dimerization and DNA binding property. Thus, this family is probably related to pfam00170. This family also includes the DNA_binding domain of Skn-1, this domain lacks the leucine zipper found in other bZip domains, and binds DNA is a monomer.


Pssm-ID: 427158 [Multi-domain]  Cd Length: 92  Bit Score: 90.48  E-value: 1.53e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 383292889  1166 ISVPDIINLPMDEFNERLskYDLSENQLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLE 1245
Cdd:pfam03131    1 LSDEELLSMSVREFNRFL--RGLTEEEVIRLKQRRRRLKNRGYAQSCRKRRLQQKESLEKERSELREQLERLVQELSRLR 78
                           90
                   ....*....|....
gi 383292889  1246 SERKRISNKFAMLH 1259
Cdd:pfam03131   79 QELDALKRRNEQLQ 92
bZIP_BACH cd14719
Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and ...
1189-1258 3.33e-15

Basic leucine zipper (bZIP) domain of BTB and CNC homolog (BACH) proteins: a DNA-binding and dimerization domain; BACH proteins are Cap'n'Collar (CNC) Basic leucine zipper (bZIP) transcription factors that are defined by a conserved 43-amino acid region (called the CNC domain) located N-terminal to the bZIP DNA-binding domain. In addition, they contain a BTB domain (Broad complex-Tramtrack-Bric-a-brac domain, also known as the POZ [poxvirus and zinc finger] domain) that is absent in other CNC proteins. Veterbrates contain two members, BACH1 and BACH2. BACH1 forms heterodimers with small Mafs such as MafK to function as a repressor of heme oxygenase-1 (HO-1) gene (Hmox-1) enhancers. It has also been implicated as the master regulator of breast cancer bone metastasis. The BACH1 bZIP transcription factor should not be confused with the protein originally named as BRCA1-Associated C-terminal Helicase1 (BACH1), which has been renamed BRIP1 (BRCA1 Interacting Protein C-terminal Helicase1) and also called FANCJ. BACH2 is a B-cell specific transcription factor that plays a critical role in oxidative stress-mediated apoptosis. It plays an important role in class switching and somatic hypermutation of immunoglobulin genes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269867 [Multi-domain]  Cd Length: 71  Bit Score: 71.37  E-value: 3.33e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 383292889 1189 SENQLSLIRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRISNKFAML 1258
Cdd:cd14719     1 TPEQLEFIHDVRRRSKNRIAAQRCRKRKLDCIQNLECEIKKLVCEKEKLLGERNQLKASMGELRENFSCL 70
BRLZ smart00338
basic region leucin zipper;
1196-1256 1.87e-11

basic region leucin zipper;


Pssm-ID: 197664 [Multi-domain]  Cd Length: 65  Bit Score: 60.66  E-value: 1.87e-11
                            10        20        30        40        50        60
                    ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 383292889   1196 IRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRISNKFA 1256
Cdd:smart00338    4 EKRRRRRERNREAARRSRERKKAEIEELERKVEQLEAENERLKKEIERLRRELEKLKSELE 64
bZIP cd14686
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
1199-1249 1.77e-08

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269834 [Multi-domain]  Cd Length: 52  Bit Score: 51.78  E-value: 1.77e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|.
gi 383292889 1199 IRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERK 1249
Cdd:cd14686     2 ERRRERNREAARRSRERKKERIEELEEEVEELEEENEELKAELEELRAEVE 52
bZIP_Fos_like cd14699
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a ...
1197-1250 5.59e-08

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos)-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of Fos proteins (c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2), Activating Transcription Factor-3 (ATF-3), and similar proteins. Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of bZIP dimers of the Jun and Fos families, and to a lesser extent, ATF and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. ATF3 is induced by various stress signals such as cytokines, genotoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269847 [Multi-domain]  Cd Length: 59  Bit Score: 50.72  E-value: 5.59e-08
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 383292889 1197 RDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKR 1250
Cdd:cd14699     1 RRRKRRERNKVAAAKCRQRRRELMEELQAEVEQLEDENEKLQSEIANLRSEKEQ 54
bZIP_Jun cd14696
Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and ...
1200-1253 5.65e-08

Basic leucine zipper (bZIP) domain of Jun proteins and similar proteins: a DNA-binding and dimerization domain; Jun is a member of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are three Jun proteins: c-Jun, JunB, and JunD. c-Jun is the most potent transcriptional activator of the AP-1 proteins. Both c-Jun and JunB are essential during development; deletion of either results in embryonic lethality in mice. c-Jun is essential in hepatogenesis and liver erythropoiesis, while JunB is required in vasculogenesis and angiogenesis in extraembryonic tissues. While JunD is dispensable in embryonic development, it is involved in transcription regulation of target genes that help cells to cope with environmental signals. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269844 [Multi-domain]  Cd Length: 61  Bit Score: 50.66  E-value: 5.65e-08
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNaVVKRKtqlNQD--------RDHLESERKRISN 1253
Cdd:cd14696     4 RKRARNRIAASKCRKRKLERIARLEDKVK-ELKNQ---NSEltstasllREQVCQLKQKVME 61
bZIP_XBP1 cd14691
Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a ...
1197-1257 5.28e-07

Basic leucine zipper (bZIP) domain of X-box binding protein 1 (XBP1) and similar proteins: a DNA-binding and dimerization domain; XBP1, a member of the Basic leucine zipper (bZIP) family, is the key transcription factor that orchestrates the unfolded protein response (UPR). It is the most conserved component of the UPR and is critical for cell fate determination in response to ER stress. The inositol-requiring enzyme 1 (IRE1)-XBP1 pathway is one of the three major sensors at the ER membrane that initiates the UPR upon activation. IRE1, a type I transmembrane protein kinase and endoribonuclease, oligomerizes upon ER stress leading to its increased activity. It splices the XBP1 mRNA, producing a variant that translocates to the nucleus and activates its target genes, which are involved in protein folding, degradation, and trafficking. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269839 [Multi-domain]  Cd Length: 58  Bit Score: 47.97  E-value: 5.28e-07
                          10        20        30        40        50        60
                  ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 383292889 1197 RDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQdrdhlESERKRISNKFAM 1257
Cdd:cd14691     3 KDLRRKLKNRVAAQTARDRKKARMDELEERVRELEEENQKLRA-----ENESLRARNEDLL 58
bZIP_Fos cd14721
Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization ...
1200-1251 8.38e-06

Basic leucine zipper (bZIP) domain of the oncogene Fos (Fos): a DNA-binding and dimerization domain; Fos proteins are members of the activator protein-1 (AP-1) complex, which is mainly composed of Basic leucine zipper (bZIP) dimers of the Jun and Fos families, and to a lesser extent, the activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. The broad combinatorial possibilities for various dimers determine binding specificity, affinity, and the spectrum of regulated genes. The AP-1 complex is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. There are four Fos proteins: c-Fos, FosB, Fos-related antigen 1 (Fra-1), and Fra-2. In addition, FosB also exists as smaller splice variants FosB2 and deltaFosB2. They all contain an N-terminal region and a bZIP domain. c-Fos and FosB also contain a C-terminal transactivation domain which is absent in Fra-1/2 and the smaller FosB variants. Fos proteins can only heterodimerize with Jun and other AP-1 proteins, but cannot homodimerize. Fos:Jun heterodimers are more stable and can bind DNA with more affinity that Jun:Jun homodimers. Fos proteins can enhance the trans-activating and transforming properties of Jun proteins. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269869 [Multi-domain]  Cd Length: 62  Bit Score: 44.66  E-value: 8.38e-06
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|..
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERKRI 1251
Cdd:cd14721     4 VRRERNKLAAAKCRQRRVDLTNTLQAETEQLEDEKSSLQNEIANLQKQKEQL 55
bZIP_1 pfam00170
bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper ...
1197-1249 3.56e-05

bZIP transcription factor; The Pfam entry includes the basic region and the leucine zipper region.


Pssm-ID: 395118 [Multi-domain]  Cd Length: 60  Bit Score: 42.75  E-value: 3.56e-05
                           10        20        30        40        50
                   ....*....|....*....|....*....|....*....|....*....|...
gi 383292889  1197 RDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERK 1249
Cdd:pfam00170    1 KREKRKQSNREAARRSRQRKQAYIEELERRVKALEGENKTLRSELEELKKEVE 53
bZIP_ATF2 cd14687
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar ...
1200-1247 5.14e-05

Basic leucine zipper (bZIP) domain of Activating Transcription Factor-2 (ATF-2) and similar proteins: a DNA-binding and dimerization domain; ATF-2 is a sequence-specific DNA-binding protein that belongs to the Basic leucine zipper (bZIP) family of transcription factors. In response to stress, it activates a variety of genes including cyclin A, cyclin D, and c-Jun. ATF-2 also plays a role in the DNA damage response that is independent of its transcriptional activity. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269835 [Multi-domain]  Cd Length: 61  Bit Score: 42.13  E-value: 5.14e-05
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESE 1247
Cdd:cd14687     4 RFLERNRIAASKCRQRKKQWVQQLEEKVRKLESENKALKAEVDKLREE 51
bZIP_u1 cd14810
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
1200-1249 8.92e-05

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269872  Cd Length: 52  Bit Score: 41.48  E-value: 8.92e-05
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNavvKRKTQLNQDRDHLESERK 1249
Cdd:cd14810     3 KRQLRNKISARNFRARRKEYITQLEEQVA---DRDAEIEQLRAELRALRN 49
bZIP_HY5-like cd14704
Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription ...
1200-1247 1.55e-04

Basic leucine zipper (bZIP) domain of Plant Elongated/Long Hypocotyl5 (HY5)-like transcription factors and similar proteins: a DNA-binding and dimerization domain; This subfamily is predominantly composed of plant Basic leucine zipper (bZIP) transcription factors with similarity to Solanum lycopersicum and Arabidopsis thaliana HY5. Also included are the Dictyostelium discoideum bZIP transcription factors E and F. HY5 plays an important role in seedling development and is a positive regulator of photomorphogenesis. Plants with decreased levels of HY5 show defects in light responses including inhibited photomorphogenesis, loss of alkaloid organization, and reduced carotenoid accumulation. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269852 [Multi-domain]  Cd Length: 52  Bit Score: 40.64  E-value: 1.55e-04
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESE 1247
Cdd:cd14704     3 RRLLRNRESAQLSRQRKKEYLSELEAKCRELEAENAELEARVELLQAE 50
bZIP_ATF3 cd14722
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar ...
1197-1261 1.77e-04

Basic leucine zipper (bZIP) domain of Activating Transcription Factor-3 (ATF-3) and similar proteins: a DNA-binding and dimerization domain; ATF-3 is a Basic leucine zipper (bZIP) transcription factor that is induced by various stress signals such as cytokines, genetoxic agents, or physiological stresses. It is implicated in cancer and host defense against pathogens. It negatively regulates the transcription of pro-inflammatory cytokines and is critical in preventing acute inflammatory syndromes. Mice deficient with ATF3 display increased susceptibility to endotoxic shock induced death. ATF3 dimerizes with Jun and other ATF proteins; the heterodimers function either as activators or repressors depending on the promoter context. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269870  Cd Length: 62  Bit Score: 40.91  E-value: 1.77e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 383292889 1197 RDIRRRGKNKVAAQNCRKRK--LDQILTLEDE----VNAVVKRKTQlnqdrdHLESERKRISNkfaMLHRH 1261
Cdd:cd14722     1 RRRRRRERNKVAAAKCRNKKkeRTDCLQKESEkletQNAELKRQIE------ELKNEKQHLID---MLNLH 62
bZIP_CREB3 cd14689
Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 3 (CREB3) ...
1196-1249 2.17e-04

Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 3 (CREB3) and similar proteins: a DNA-binding and dimerization domain; This subfamily is composed of CREB3 (also called LZIP or Luman), and the CREB3-like proteins CREB3L1 (or OASIS), CREB3L2, CREB3L3 (or CREBH), and CREB3L4 (or AIbZIP). They are type II membrane-associated members of the Basic leucine zipper (bZIP) family of transcription factors, with their N-termini facing the cytoplasm and their C-termini penetrating through the ER membrane. They contain an N-terminal transcriptional activation domain followed bZIP and transmembrane domains, and a C-terminal tail. They play important roles in ER stress and the unfolded protein response (UPR), as well as in many other biological processes such as cell secretion, bone and cartilage formation, and carcinogenesis. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269837 [Multi-domain]  Cd Length: 61  Bit Score: 40.60  E-value: 2.17e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....
gi 383292889 1196 IRDIRRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERK 1249
Cdd:cd14689     1 LKKVRRKIRNKISAQESRRRKKEYIDGLESRVAACTAENQELKKKVEELEKQNR 54
bZIP_CREB1 cd14690
Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) ...
1197-1254 6.56e-04

Basic leucine zipper (bZIP) domain of Cyclic AMP-responsive element-binding protein 1 (CREB1) and similar proteins: a DNA-binding and dimerization domain; CREB1 is a Basic leucine zipper (bZIP) transcription factor that plays a role in propagating signals initiated by receptor activation through the induction of cAMP-responsive genes. Because it responds to many signal transduction pathways, CREB1 is implicated to function in many processes including learning, memory, circadian rhythm, immune response, and reproduction, among others. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269838 [Multi-domain]  Cd Length: 55  Bit Score: 39.15  E-value: 6.56e-04
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|....*...
gi 383292889 1197 RDIRRRGKNKVAAQNCRKRKLDQILTLEDEVnavvkrkTQLNQDRDHLESERKRISNK 1254
Cdd:cd14690     1 KRQLRLEKNREAARECRRKKKEYVKCLENRV-------AVLENENKELREELKILKEL 51
bZIP_ATF4 cd14692
Basic leucine zipper (bZIP) domain of Activating Transcription Factor-4 (ATF-4) and similar ...
1200-1247 1.11e-03

Basic leucine zipper (bZIP) domain of Activating Transcription Factor-4 (ATF-4) and similar proteins: a DNA-binding and dimerization domain; ATF-4 was also isolated and characterized as the cAMP-response element binding protein 2 (CREB2). It is a Basic leucine zipper (bZIP) transcription factor that has been reported to act as both an activator or repressor. It is a critical component in both the unfolded protein response (UPR) and amino acid response (AAR) pathways. Under certain stress conditions, ATF-4 transcription is increased; accumulation of ATF-4 induces the expression of genes involved in amino acid metabolism and transport, mitochondrial function, redox chemistry, and others that ensure protein synthesis and recovery from stress. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269840 [Multi-domain]  Cd Length: 63  Bit Score: 38.71  E-value: 1.11e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*...
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESE 1247
Cdd:cd14692     5 RKREQNKNAATRYRQKKREEKEELLSEEEELEDRNRELKDEVEELQRE 52
bZIP_Maf_large cd14718
Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a ...
1200-1252 4.32e-03

Basic leucine zipper (bZIP) domain of large musculoaponeurotic fibrosarcoma (Maf) proteins: a DNA-binding and dimerization domain; Maf proteins are Basic leucine zipper (bZIP) transcription factors that may participate in the activator protein-1 (AP-1) complex, which is implicated in many cell functions including proliferation, apoptosis, survival, migration, tumorigenesis, and morphogenesis, among others. Maf proteins fall into two groups: small and large. The large Mafs (c-Maf, MafA, MafB, and neural retina leucine zipper or NRL) contain an N-terminal transactivation domain, a linker region of varying size, an anxillary DNA-binding domain, a C-terminal bZIP domain. They function as critical regulators of terminal differentiation in the blood and in many tissues such as bone, brain, kidney, pancreas, and retina. MafA and MafB also play crucial roles in islet beta cells; they regulate genes essential for glucose sensing and insulin secretion cooperatively and sequentially. Large Mafs are also implicated in oncogenesis; MafB and c-Maf chromosomal translocations result in multiple myelomas. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269866  Cd Length: 70  Bit Score: 37.26  E-value: 4.32e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|...
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEdevnavvKRKTQLNQDRDHLESERKRIS 1252
Cdd:cd14718    11 RRTLKNRGYAQSCRSKRVQQRHVLE-------SEKCQLQQQVEQLKQEVSRLA 56
bZIP_GCN4 cd12193
Basic leucine zipper (bZIP) domain of General control protein GCN4: a DNA-binding and ...
1200-1249 4.89e-03

Basic leucine zipper (bZIP) domain of General control protein GCN4: a DNA-binding and dimerization domain; GCN4 was identified in Saccharomyces cerevisiae from mutations in a deficiency in activation with the general amino acid control pathway. GCN4 encodes a trans-activator of amino acid biosynthetic genes containing 2 acidic activation domains and a C-terminal bZIP domain. In amino acid-deprived cells, GCN4 is up-regulated leading to transcriptional activation of genes encoding amino acid biosynthetic enzymes. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269833 [Multi-domain]  Cd Length: 54  Bit Score: 36.39  E-value: 4.89e-03
                          10        20        30        40        50
                  ....*....|....*....|....*....|....*....|....*....|
gi 383292889 1200 RRRGKNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESERK 1249
Cdd:cd12193     5 AKRARNTLAARRSRARKLEEMEELEKRVEELEAENEELKTRAEVLEAEAR 54
bZIP_u3 cd14812
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
1204-1247 9.06e-03

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; uncharacterized subfamily; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269874 [Multi-domain]  Cd Length: 52  Bit Score: 35.65  E-value: 9.06e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....
gi 383292889 1204 KNKVAAQNCRKRKLDQILTLEDEVNAVVKRKTQLNQDRDHLESE 1247
Cdd:cd14812     7 RNRAAAQLSRQRKKEEVEELEARVKELEAENRRLRQLLAQPEAE 50
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH