NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|387914224|gb|AFK10721|]
View 

arf-GAP with dual PH domain-containing protein 1 [Callorhinchus milii]

Protein Classification

ADAP family PH domain-containing protein( domain architecture ID 12962796)

ADAP family PH (pleckstrin homology) domain-containing protein similar to PH region of Arf-GAP with dual PH domain-containing protein 1 (ADAP1) and 2 (ADAP2), which are GTPase-activating proteins for the ADP ribosylation factor family

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
5-116 1.51e-77

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


:

Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 234.28  E-value: 1.51e-77
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   5 RDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSGISKVKSIRLDFWEDDLVERMKTQGNLVA 84
Cdd:cd08844    1 RDRNKKRLLELLKLPGNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNLPDISRVKSIRLDFWEDELVEFMKENGNLKA 80
                         90       100       110
                 ....*....|....*....|....*....|..
gi 387914224  85 KNHFEADVPLFYYRPQASDCMVLKDQWIRAKY 116
Cdd:cd08844   81 KAKFEAFVPPFYYRPQANDCDVLKEQWIRAKY 112
PH1_ADAP cd13252
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called ...
135-242 3.79e-57

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 270072  Cd Length: 109  Bit Score: 182.07  E-value: 3.79e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 135 GKRVGELWKRGRDNGTFLKRNFILSQKEGTLQYYVKE-AKGPKAVIRVADLNATLQPEKVGNPNGMQISYLKDGRTRNMF 213
Cdd:cd13252    1 GSKEGFLWKRGKDNNQFKQRKFVLSEREGTLKYFVKEdAKEPKAVISIEELNATFQPEKIGHPNGLQITYLKDGSTRNIF 80
                         90       100
                 ....*....|....*....|....*....
gi 387914224 214 VYHSKGKEIVDWLNAIRGARLQYLKEAFP 242
Cdd:cd13252   81 VYHEDGKEIVDWYNAIRAARLHYLQVAFP 109
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
256-361 7.13e-50

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


:

Pssm-ID: 241282  Cd Length: 105  Bit Score: 163.14  E-value: 7.13e-50
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 256 NYAMEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPLDAFAQGEVFIGNSECHYSVKEGLQSRSRGnRWSHGFTLVT 335
Cdd:cd01251    1 DFLKEGYLEKTGPKQTDGFRKRWFTLD--DRRLMYFKDPLDAFPKGEIFIGSKEEGYSVREGLPPGIKG-HWGFGFTLVT 77
                         90       100
                 ....*....|....*....|....*.
gi 387914224 336 PERAFLLTCENEQDFKQWMAAFREII 361
Cdd:cd01251   78 PDRTFLLSAETEEERREWITAIQKVL 103
 
Name Accession Description Interval E-value
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
5-116 1.51e-77

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 234.28  E-value: 1.51e-77
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   5 RDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSGISKVKSIRLDFWEDDLVERMKTQGNLVA 84
Cdd:cd08844    1 RDRNKKRLLELLKLPGNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNLPDISRVKSIRLDFWEDELVEFMKENGNLKA 80
                         90       100       110
                 ....*....|....*....|....*....|..
gi 387914224  85 KNHFEADVPLFYYRPQASDCMVLKDQWIRAKY 116
Cdd:cd08844   81 KAKFEAFVPPFYYRPQANDCDVLKEQWIRAKY 112
PH1_ADAP cd13252
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called ...
135-242 3.79e-57

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270072  Cd Length: 109  Bit Score: 182.07  E-value: 3.79e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 135 GKRVGELWKRGRDNGTFLKRNFILSQKEGTLQYYVKE-AKGPKAVIRVADLNATLQPEKVGNPNGMQISYLKDGRTRNMF 213
Cdd:cd13252    1 GSKEGFLWKRGKDNNQFKQRKFVLSEREGTLKYFVKEdAKEPKAVISIEELNATFQPEKIGHPNGLQITYLKDGSTRNIF 80
                         90       100
                 ....*....|....*....|....*....
gi 387914224 214 VYHSKGKEIVDWLNAIRGARLQYLKEAFP 242
Cdd:cd13252   81 VYHEDGKEIVDWYNAIRAARLHYLQVAFP 109
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
256-361 7.13e-50

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 163.14  E-value: 7.13e-50
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 256 NYAMEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPLDAFAQGEVFIGNSECHYSVKEGLQSRSRGnRWSHGFTLVT 335
Cdd:cd01251    1 DFLKEGYLEKTGPKQTDGFRKRWFTLD--DRRLMYFKDPLDAFPKGEIFIGSKEEGYSVREGLPPGIKG-HWGFGFTLVT 77
                         90       100
                 ....*....|....*....|....*.
gi 387914224 336 PERAFLLTCENEQDFKQWMAAFREII 361
Cdd:cd01251   78 PDRTFLLSAETEEERREWITAIQKVL 103
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
9-125 2.29e-45

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 151.99  E-value: 2.29e-45
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224    9 KKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSG-ISKVKSIRLDFWEDDLVERMKTQGNLVAKNH 87
Cdd:pfam01412   1 KRVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVhISKVRSLTLDTWTDEQLELMKAGGNDRANEF 80
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 387914224   88 FEADVPLFYYRPQaSDCMVLKDQWIRAKYEREEFTGVD 125
Cdd:pfam01412  81 WEANLPPSYKPPP-SSDREKRESFIRAKYVEKKFAKPG 117
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
12-128 5.61e-42

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 143.25  E-value: 5.61e-42
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224    12 LLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEA 90
Cdd:smart00105   1 LKLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLgVHISKVRSLTLDTWTEEELRLLQKGGNENANSIWES 80
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 387914224    91 DVPLFYYRPQASDCMVLKDQWIRAKYEREEFTGVDSQR 128
Cdd:smart00105  81 NLDDFSLKPPDDDDQQKYESFIAAKYEEKLFVPPESAE 118
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
2-127 3.41e-31

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 120.65  E-value: 3.41e-31
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   2 MSDRDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQG 80
Cdd:COG5347    1 MSTKSEDRKLLKLLKSDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLgVHISKVKSLTLDNWTEEELRRMEVGG 80
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*....
gi 387914224  81 NLVAKNHFEADVPLFYYRPQ--ASDCMVLKdQWIRAKYEREEFTGVDSQ 127
Cdd:COG5347   81 NSNANRFYEKNLLDQLLLPIkaKYDSSVAK-KYIRKKYELKKFIDDSSS 128
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
259-361 2.40e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 62.57  E-value: 2.40e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDP---LDAFAQGEVFIGNSECHYSVKEglqsrsRGNRWSHGFTLVT 335
Cdd:smart00233   3 KEGWLYKKSGGGKKSWKKRYFVLF--NSTLLYYKSKkdkKSYKPKGSIDLSGCTVREAPDP------DSSKKPHCFEIKT 74
                           90       100
                   ....*....|....*....|....*..
gi 387914224   336 PERA-FLLTCENEQDFKQWMAAFREII 361
Cdd:smart00233  75 SDRKtLLLQAESEEEREKWVEALRKAI 101
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
1-89 1.78e-11

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 64.88  E-value: 1.78e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   1 MMSDRDRNKKELLELLK-QHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKT 78
Cdd:PLN03114   1 MASENLNDKISVFKKLKaKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGvHISFVRSTNLDSWSSEQLKMMIY 80
                         90
                 ....*....|.
gi 387914224  79 QGNLVAKNHFE 89
Cdd:PLN03114  81 GGNNRAQVFFK 91
PH pfam00169
PH domain; PH stands for pleckstrin homology.
259-361 5.31e-11

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 59.11  E-value: 5.31e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPL---DAFAQGEVFIGNSEchysVKEGLQSRSRGNRWSHGFTLV- 334
Cdd:pfam00169   3 KEGWLLKKGGGKKKSWKKRYFVLF--DGSLLYYKDDKsgkSKEPKGSISLSGCE----VVEVVASDSPKRKFCFELRTGe 76
                          90       100
                  ....*....|....*....|....*...
gi 387914224  335 -TPERAFLLTCENEQDFKQWMAAFREII 361
Cdd:pfam00169  77 rTGKRTYLLQAESEEERKDWIKAIQSAI 104
 
Name Accession Description Interval E-value
ArfGap_ADAP2 cd08844
ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
5-116 1.51e-77

ADAP2 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350070 [Multi-domain]  Cd Length: 112  Bit Score: 234.28  E-value: 1.51e-77
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   5 RDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSGISKVKSIRLDFWEDDLVERMKTQGNLVA 84
Cdd:cd08844    1 RDRNKKRLLELLKLPGNSVCADCGAPDPDWASYTLGIFICLNCSGVHRNLPDISRVKSIRLDFWEDELVEFMKENGNLKA 80
                         90       100       110
                 ....*....|....*....|....*....|..
gi 387914224  85 KNHFEADVPLFYYRPQASDCMVLKDQWIRAKY 116
Cdd:cd08844   81 KAKFEAFVPPFYYRPQANDCDVLKEQWIRAKY 112
ArfGap_ADAP cd08832
ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) ...
6-116 3.39e-66

ArfGap with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350061 [Multi-domain]  Cd Length: 113  Bit Score: 205.19  E-value: 3.39e-66
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   6 DRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVA 84
Cdd:cd08832    2 ERNKKRLLELLKLPGNNTCADCGAPDPEWASYNLGVFICLDCSGIHRSLgTHISKVKSLRLDNWDDSQVEFMEENGNEKA 81
                         90       100       110
                 ....*....|....*....|....*....|..
gi 387914224  85 KNHFEADVPLFYYRPQASDCMVLKDQWIRAKY 116
Cdd:cd08832   82 KAKYEAHVPAFYRRPTPTDPQVLREQWIRAKY 113
PH1_ADAP cd13252
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called ...
135-242 3.79e-57

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 1; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the first PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270072  Cd Length: 109  Bit Score: 182.07  E-value: 3.79e-57
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 135 GKRVGELWKRGRDNGTFLKRNFILSQKEGTLQYYVKE-AKGPKAVIRVADLNATLQPEKVGNPNGMQISYLKDGRTRNMF 213
Cdd:cd13252    1 GSKEGFLWKRGKDNNQFKQRKFVLSEREGTLKYFVKEdAKEPKAVISIEELNATFQPEKIGHPNGLQITYLKDGSTRNIF 80
                         90       100
                 ....*....|....*....|....*....
gi 387914224 214 VYHSKGKEIVDWLNAIRGARLQYLKEAFP 242
Cdd:cd13252   81 VYHEDGKEIVDWYNAIRAARLHYLQVAFP 109
ArfGap_ADAP1 cd08843
ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs ...
5-116 2.46e-56

ADAP1 GTPase activating protein for Arf, with dual PH domains; The ADAP subfamily, ArfGAPs with dual pleckstrin homology (PH) domains, includes two members: ADAP1 and ADAP2. Both ADAP1 (also known as centaurin-alpha1, p42(IP4), or PIP3BP) and ADAP2 (centaurin-alpha2) display a GTPase-activating protein (GAP) activity toward Arf6 (ADP-ribosylation factor 6), which is involved in protein trafficking that regulates endocytic recycling, cytoskeleton remodeling, and neuronal differentiation. ADAP2 has high sequence similarity to the ADAP1 and they both contain a ArfGAP domain at the N-terminus, followed by two PH domains. However, ADAP1, unlike ADAP2, contains a putative N-terminal nuclear localization signal. The PH domains of ADAP1bind to the two second messenger molecules phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with identical high affinity, whereas those of ADAP2 specifically binds phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) and PI(3,4,5)P3, which are produced by activated phosphatidylinositol 3-kinase. ADAP1 is predominantly expressed in the brain neurons, while ADAP2 is broadly expressed, including the adipocytes, heart, and skeletal muscle but not in the brain. The limited distribution and high expression of ADAP1 in the brain indicates that ADAP1 is important for neuronal functions. ADAP1 has been shown to highly expressed in the neurons and plagues of Alzheimer's disease patients. In other hand, ADAP2 gene deletion has been shown to cause circulatory deficiencies and heart shape defects in zebrafish, indicating that ADAP2 has a vital role in heart development. Taken together, the hemizygous deletion of ADAP2 gene may be contributing to the cardiovascular malformation in patients with neurofibromatosis type 1 (NF1) microdeletions.


Pssm-ID: 350069 [Multi-domain]  Cd Length: 112  Bit Score: 180.20  E-value: 2.46e-56
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   5 RDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSGISKVKSIRLDFWEDDLVERMKTQGNLVA 84
Cdd:cd08843    1 GKERRRAVLELLQRPGNARCADCGAPDPDWASYTLGVFICLSCSGIHRNIPQVSKVKSVRLDAWEEAQVEFMASHGNDAA 80
                         90       100       110
                 ....*....|....*....|....*....|..
gi 387914224  85 KNHFEADVPLFYYRPQASDCMVLKDQWIRAKY 116
Cdd:cd08843   81 RARFESKVPSFYYRPTPSDCQLLREQWIRAKY 112
PH2_ADAP cd01251
ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called ...
256-361 7.13e-50

ArfGAP with dual PH domains Pleckstrin homology (PH) domain, repeat 2; ADAP (also called centaurin alpha) is a phophatidlyinositide binding protein consisting of an N-terminal ArfGAP domain and two PH domains. In response to growth factor activation, PI3K phosphorylates phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 1 is recruited to the plasma membrane following growth factor stimulation by specific binding of its PH domain to phosphatidylinositol 3,4,5-trisphosphate. Centaurin alpha 2 is constitutively bound to the plasma membrane since it binds phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate with equal affinity. This cd contains the second PH domain repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241282  Cd Length: 105  Bit Score: 163.14  E-value: 7.13e-50
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 256 NYAMEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPLDAFAQGEVFIGNSECHYSVKEGLQSRSRGnRWSHGFTLVT 335
Cdd:cd01251    1 DFLKEGYLEKTGPKQTDGFRKRWFTLD--DRRLMYFKDPLDAFPKGEIFIGSKEEGYSVREGLPPGIKG-HWGFGFTLVT 77
                         90       100
                 ....*....|....*....|....*.
gi 387914224 336 PERAFLLTCENEQDFKQWMAAFREII 361
Cdd:cd01251   78 PDRTFLLSAETEEERREWITAIQKVL 103
ArfGap cd08204
GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family ...
12-116 1.66e-49

GTPase-activating protein (GAP) for the ADP ribosylation factors (ARFs); ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide-binding protein Arf, a member of the Ras superfamily of GTPases. Like all GTP-binding proteins, Arf proteins function as molecular switches, cycling between GTP (active-membrane bound) and GDP (inactive-cytosolic) form. Conversion to the GTP-bound form requires a guanine nucleotide exchange factor (GEF), whereas conversion to the GDP-bound form is catalyzed by a GTPase activating protein (GAP). In that sense, ArfGAPs were originally proposed to function as terminators of Arf signaling, which is mediated by regulating Arf family GTP-binding proteins. However, recent studies suggest that ArfGAPs can also function as Arf effectors, independently of their GAP enzymatic activity to transduce signals in cells. The ArfGAP domain contains a C4-type zinc finger motif and a conserved arginine that is required for activity, within a specific spacing (CX2CX16CX2CX4R). ArfGAPs, which have multiple functional domains, regulate the membrane trafficking and actin cytoskeleton remodeling via specific interactions with signaling lipids such as phosphoinositides and trafficking proteins, which consequently affect cellular events such as cell growth, migration, and cancer invasion. The ArfGAP family, which includes 31 human ArfGAP-domain containing proteins, is divided into 10 subfamilies based on domain structure and sequence similarity. The ArfGAP nomenclature is mainly based on the protein domain structure. For example, ASAP1 contains ArfGAP, SH3, ANK repeat and PH domains; ARAPs contain ArfGAP, Rho GAP, ANK repeat and PH domains; ACAPs contain ArfGAP, BAR (coiled coil), ANK repeat and PH domains; and AGAPs contain Arf GAP, GTP-binding protein-like, ANK repeat and PH domains. Furthermore, the ArfGAPs can be classified into two major types of subfamilies, according to the overall domain structure: the ArfGAP1 type includes 6 subfamilies (ArfGAP1, ArfGAP2/3, ADAP, SMAP, AGFG, and GIT), which contain the ArfGAP domain at the N-terminus of the protein; and the AZAP type includes 4 subfamilies (ASAP, ACAP, AGAP, and ARAP), which contain an ArfGAP domain between the PH and ANK repeat domains.


Pssm-ID: 350058 [Multi-domain]  Cd Length: 106  Bit Score: 162.28  E-value: 1.66e-49
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  12 LLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEA 90
Cdd:cd08204    1 LEELLKLPGNKVCADCGAPDPRWASINLGVFICIRCSGIHRSLgVHISKVRSLTLDSWTPEQVELMKAIGNARANAYYEA 80
                         90       100
                 ....*....|....*....|....*.
gi 387914224  91 DVPLFYYRPQASDCMVLKDQWIRAKY 116
Cdd:cd08204   81 NLPPGFKKPTPDSSDEEREQFIRAKY 106
ArfGap pfam01412
Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating ...
9-125 2.29e-45

Putative GTPase activating protein for Arf; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 460200 [Multi-domain]  Cd Length: 117  Bit Score: 151.99  E-value: 2.29e-45
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224    9 KKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSG-ISKVKSIRLDFWEDDLVERMKTQGNLVAKNH 87
Cdd:pfam01412   1 KRVLRELLKLPGNKVCADCGAPNPTWASVNLGIFICIDCSGVHRSLGVhISKVRSLTLDTWTDEQLELMKAGGNDRANEF 80
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 387914224   88 FEADVPLFYYRPQaSDCMVLKDQWIRAKYEREEFTGVD 125
Cdd:pfam01412  81 WEANLPPSYKPPP-SSDREKRESFIRAKYVEKKFAKPG 117
ArfGap smart00105
Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with ...
12-128 5.61e-42

Putative GTP-ase activating proteins for the small GTPase, ARF; Putative zinc fingers with GTPase activating proteins (GAPs) towards the small GTPase, Arf. The GAP of ARD1 stimulates GTPase hydrolysis for ARD1 but not ARFs.


Pssm-ID: 214518 [Multi-domain]  Cd Length: 119  Bit Score: 143.25  E-value: 5.61e-42
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224    12 LLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEA 90
Cdd:smart00105   1 LKLLRSIPGNKKCFDCGAPNPTWASVNLGVFLCIECSGIHRSLgVHISKVRSLTLDTWTEEELRLLQKGGNENANSIWES 80
                           90       100       110
                   ....*....|....*....|....*....|....*...
gi 387914224    91 DVPLFYYRPQASDCMVLKDQWIRAKYEREEFTGVDSQR 128
Cdd:smart00105  81 NLDDFSLKPPDDDDQQKYESFIAAKYEEKLFVPPESAE 118
ArfGap_SMAP cd08839
Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of ...
12-116 3.03e-32

Stromal membrane-associated proteins; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350068 [Multi-domain]  Cd Length: 103  Bit Score: 116.99  E-value: 3.03e-32
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  12 LLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSG-ISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEA 90
Cdd:cd08839    1 LAKLLREEDNKYCADCGAKGPRWASWNLGVFICIRCAGIHRNLGVhISKVKSVNLDSWTPEQVQSMQEMGNARANAYYEA 80
                         90       100
                 ....*....|....*....|....*.
gi 387914224  91 DVPLFYYRPQASDCMvlkDQWIRAKY 116
Cdd:cd08839   81 NLPDGFRRPQTDSAL---ENFIRDKY 103
COG5347 COG5347
GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ...
2-127 3.41e-31

GTPase-activating protein that regulates ARFs (ADP-ribosylation factors), involved in ARF-mediated vesicular transport [Intracellular trafficking and secretion];


Pssm-ID: 227651 [Multi-domain]  Cd Length: 319  Bit Score: 120.65  E-value: 3.41e-31
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   2 MSDRDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQG 80
Cdd:COG5347    1 MSTKSEDRKLLKLLKSDSSNKKCADCGAPNPTWASVNLGVFLCIDCAGVHRSLgVHISKVKSLTLDNWTEEELRRMEVGG 80
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|....*....
gi 387914224  81 NLVAKNHFEADVPLFYYRPQ--ASDCMVLKdQWIRAKYEREEFTGVDSQ 127
Cdd:COG5347   81 NSNANRFYEKNLLDQLLLPIkaKYDSSVAK-KYIRKKYELKKFIDDSSS 128
ArfGap_AGAP cd08836
ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation ...
20-117 5.51e-29

ArfGAP with GTPase domain, ANK repeat and PH domains; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350065 [Multi-domain]  Cd Length: 108  Bit Score: 108.53  E-value: 5.51e-29
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVPLfYYR 98
Cdd:cd08836   11 GNDHCVDCGAPNPDWASLNLGALMCIECSGIHRNLgTHISRVRSLDLDDWPVELLKVMSAIGNDLANSVWEGNTQG-RTK 89
                         90
                 ....*....|....*....
gi 387914224  99 PQASDCMVLKDQWIRAKYE 117
Cdd:cd08836   90 PTPDSSREEKERWIRAKYE 108
ArfGap_ArfGap1 cd08830
Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
9-89 1.85e-28

Arf1 GTPase-activating protein 1; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350059 [Multi-domain]  Cd Length: 115  Bit Score: 107.20  E-value: 1.85e-28
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   9 KKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLsG--ISKVKSIRLDFWEDDLVERMKTQGNLVAKN 86
Cdd:cd08830    2 RAVLRELQKLPGNNRCFDCGAPNPQWASVSYGIFICLECSGVHRGL-GvhISFVRSITMDSWSEKQLKKMELGGNAKLRE 80

                 ...
gi 387914224  87 HFE 89
Cdd:cd08830   81 FFE 83
ArfGap_ACAP cd08835
ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP ...
14-121 2.03e-28

ArfGAP domain of ACAP (ArfGAP with Coiled-coil, ANK repeat and PH domains) proteins; ArfGAP domain is an essential part of ACAP proteins that play important role in endocytosis, actin remodeling and receptor tyrosine kinase-dependent cell movement. ACAP subfamily of ArfGAPs are composed of coiled coils (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. In addition, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350064 [Multi-domain]  Cd Length: 116  Bit Score: 107.34  E-value: 2.03e-28
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  14 ELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLsG--ISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEAD 91
Cdd:cd08835    6 QVLSVPGNAQCCDCGSPDPRWASINLGVTLCIECSGIHRSL-GvhVSKVRSLTLDSWEPELLKVMLELGNDVVNRIYEAN 84
                         90       100       110
                 ....*....|....*....|....*....|.
gi 387914224  92 VPLFYYRPQASDC-MVLKDQWIRAKYEREEF 121
Cdd:cd08835   85 VPDDGSVKPTPDSsRQEREAWIRAKYVEKKF 115
ArfGap_ACAP1 cd08852
ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs ...
20-121 1.17e-26

ArfGAP domain of ACAP1 (ArfGAP with Coiled-coil, ANK repeat and PH domains 1); ACAP1 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350077 [Multi-domain]  Cd Length: 120  Bit Score: 102.73  E-value: 1.17e-26
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADV-PLFYY 97
Cdd:cd08852   12 GNAQCCDCREPAPEWASINLGVTLCIQCSGIHRSLGvHFSKVRSLTLDSWEPELVKLMCELGNVIINQIYEARIeAMAIK 91
                         90       100
                 ....*....|....*....|....
gi 387914224  98 RPQASDCMVLKDQWIRAKYEREEF 121
Cdd:cd08852   92 KPGPSSSRQEKEAWIRAKYVEKKF 115
ArfGap_AGAP3 cd08855
ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation ...
20-117 8.00e-26

ArfGAP with GTPase domain, ANK repeat and PH domain 3; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion.


Pssm-ID: 350080 [Multi-domain]  Cd Length: 110  Bit Score: 100.13  E-value: 8.00e-26
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVPlFYYR 98
Cdd:cd08855   13 GNSFCIDCDAPNPDWASLNLGALMCIECSGIHRNLgTHLSRVRSLDLDDWPVELSMVMTAIGNAMANSVWEGALD-GYSK 91
                         90
                 ....*....|....*....
gi 387914224  99 PQASDCMVLKDQWIRAKYE 117
Cdd:cd08855   92 PGPDSTREEKERWIRAKYE 110
ArfGap_SMAP2 cd08859
Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of ...
12-120 1.55e-25

Stromal membrane-associated protein 2; a subfamily of the ArfGAP family; The SMAP subfamily of Arf GTPase-activating proteins consists of the two structurally-related members, SMAP1 and SMAP2. Each SMAP member exhibits common and distinct functions in vesicle trafficking. They both bind to clathrin heavy chain molecules and are involved in the trafficking of clathrin-coated vesicles. SMAP1 preferentially exhibits GAP toward Arf6, while SMAP2 prefers Arf1 as a substrate. SMAP1 is involved in Arf6-dependent vesicle trafficking, but not Arf6-mediated actin cytoskeleton reorganization, and regulates clathrin-dependent endocytosis of the transferrin receptors and E-cadherin. SMAP2 regulates Arf1-dependent retrograde transport of TGN38/46 from the early endosome to the trans-Golgi network (TGN). SMAP2 has the Clathrin Assembly Lymphoid Myeloid (CALM)-binding domain, but SMAP1 does not.


Pssm-ID: 350083 [Multi-domain]  Cd Length: 107  Bit Score: 99.29  E-value: 1.55e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  12 LLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEA 90
Cdd:cd08859    1 LASLLLEEENKFCADCQSKGPRWASWNIGVFICIRCAGIHRNLGvHISRVKSVNLDQWTQEQIQCMQEMGNGKANRLYEA 80
                         90       100       110
                 ....*....|....*....|....*....|
gi 387914224  91 DVPLFYYRPQASDCMvlkDQWIRAKYEREE 120
Cdd:cd08859   81 FLPENFRRPQTDQAV---EGFIRDKYEKKK 107
ArfGap_ArfGap1_like cd08959
ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
9-90 2.42e-25

ARF1 GTPase-activating protein 1-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350084 [Multi-domain]  Cd Length: 115  Bit Score: 99.12  E-value: 2.42e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   9 KKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLsG--ISKVKSIRLDFWEDDLVERMKTQGNLVAKN 86
Cdd:cd08959    2 RAVFKKLRSKPENKVCFDCGAKNPQWASVTYGIFICLDCSGVHRGL-GvhISFVRSTTMDKWTEEQLRKMKVGGNANARE 80

                 ....
gi 387914224  87 HFEA 90
Cdd:cd08959   81 FFKQ 84
ArfGap_ACAP3 cd08850
ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs ...
20-121 7.08e-25

ArfGAP domain of ACAP3 (ArfGAP with Coiled-coil, ANK repeat and PH domains 3); ACAP3 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. It has been shown that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) also have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages.


Pssm-ID: 350075 [Multi-domain]  Cd Length: 116  Bit Score: 97.71  E-value: 7.08e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLsGI--SKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVP-LFY 96
Cdd:cd08850   12 GNDQCCDCGQPDPRWASINLGILLCIECSGIHRSL-GVhcSKVRSLTLDSWEPELLKLMCELGNSTVNQIYEAQCEeLGL 90
                         90       100
                 ....*....|....*....|....*
gi 387914224  97 YRPQASDCMVLKDQWIRAKYEREEF 121
Cdd:cd08850   91 KKPTASSSRQDKEAWIKAKYVEKKF 115
ArfGap_ACAP2 cd08851
ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs ...
20-121 6.04e-23

ArfGAP domain of ACAP2 (ArfGAP with Coiled-coil, ANK repeat and PH domains 2); ACAP2 belongs to the ACAP subfamily of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). ACAP subfamily of ArfGAPs are composed of Coiled coli (BAR, Bin-Amphiphysin-Rvs), PH, ArfGAP and ANK repeats domains. ACAP1 (centaurin beta1) and ACAP2 centaurin beta2) have a GAP (GTPase-activating protein) activity preferentially toward Arf6, which regulates endocytic recycling. Both ACAP1/2 are activated by are activated by the phosphoinositides, PI(4,5)P2 and PI(3,5)P2. ACAP1 binds specifically with recycling cargo proteins such as transferrin receptor (TfR) and cellubrevin. Thus, ACAP1 promotes cargo sorting to enhance TfR recycling from the recycling endosome. In addition, phosphorylation of ACAP by Akt, a serine/threonine protein kinase, regulates the recycling of integrin beta1 to control cell migration. In contrast, ACAP2 does not exhibit a similar interaction with the recycling cargo proteins. It has been shown that ACAP2 functions both as an effector of Ras-related protein Rab35 and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. Moreover, ACAP2, together with Rab35, regulates phagocytosis in mammalian macrophages. ACAP3 also positively regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.


Pssm-ID: 350076 [Multi-domain]  Cd Length: 116  Bit Score: 92.74  E-value: 6.04e-23
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADV-PLFYY 97
Cdd:cd08851   12 GNASCCDCGLADPRWASINLGITLCIECSGIHRSLGvHFSKVRSLTLDTWEPELLKLMCELGNDVINRIYEARVeKMGAK 91
                         90       100
                 ....*....|....*....|....
gi 387914224  98 RPQASDCMVLKDQWIRAKYEREEF 121
Cdd:cd08851   92 KPQPGGQRQEKEAYIRAKYVERKF 115
ArfGap_ArfGap2_3_like cd08831
Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating ...
9-89 1.61e-22

Arf1 GTPase-activating protein 2/3-like; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350060 [Multi-domain]  Cd Length: 116  Bit Score: 91.45  E-value: 1.61e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   9 KKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNH 87
Cdd:cd08831    3 DAIFKKLRSKPENKVCFDCGAKNPTWASVTFGVFLCLDCSGVHRSLgVHISFVRSTNLDSWTPEQLRRMKVGGNAKAREF 82

                 ..
gi 387914224  88 FE 89
Cdd:cd08831   83 FK 84
ArfGap_AGAP2 cd08853
ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation ...
20-117 2.16e-22

ArfGAP with GTPase domain, ANK repeat and PH domain 2; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350078 [Multi-domain]  Cd Length: 109  Bit Score: 90.84  E-value: 2.16e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVPlFYYR 98
Cdd:cd08853   12 GNSHCVDCETQNPKWASLNLGVLMCIECSGIHRNLgTHLSRVRSLDLDDWPVELRKVMSSIGNELANSIWEGSSQ-GQTK 90
                         90
                 ....*....|....*....
gi 387914224  99 PQASDCMVLKDQWIRAKYE 117
Cdd:cd08853   91 PSSDSTREEKERWIRAKYE 109
ArfGap_AGAP1 cd08854
ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation ...
20-117 6.90e-22

ArfGAP with GTPase domain, ANK repeat and PH domain 1; The AGAP subfamily of ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) includes three members: AGAP1-3. In addition to the Arf GAP domain, AGAP proteins contain GTP-binding protein-like, ANK repeat and pleckstrin homology (PH) domains. AGAP1 and AGAP2 have phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-mediated GTPase-activating protein (GAP) activity preferentially toward Arf1, and function in the endocytic system. AGAP1 and AGAP2 independently regulate AP-3 endosomes and AP-1/Rab4 fast recycling endosomes, respectively. AGAP1, via its PH domain, directly interacts with the adapter protein 3 (AP-3), which is a coat protein involved in trafficking in the endosomal-lysosomal system, and regulates AP-3-dependent trafficking. In other hand, AGAP2 specifically binds the clathrin adaptor protein AP-1 and regulates the AP-1/Rab-4 dependent endosomal trafficking. AGAP2 is overexpressed in different human cancers including prostate carcinoma and glioblastoma, and promotes cancer cell invasion. AGAP3 exists as a component of the NMDA receptor complex that regulates Arf6 and Ras/ERK signaling pathways. Moreover, AGAP3 regulates AMPA receptor trafficking through the ArfGAP domain. Together, AGAP3 is believed to involve in linking NMDA receptor activation to AMPA receptor trafficking.


Pssm-ID: 350079 [Multi-domain]  Cd Length: 109  Bit Score: 89.68  E-value: 6.90e-22
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVpLFYYR 98
Cdd:cd08854   12 GNSLCVDCGAPNPTWASLNLGALICIECSGIHRNLgTHLSRVRSLDLDDWPRELTLVLTAIGNHMANSIWESCT-QGRTK 90
                         90
                 ....*....|....*....
gi 387914224  99 PQASDCMVLKDQWIRAKYE 117
Cdd:cd08854   91 PAPDSSREERESWIRAKYE 109
ArfGap_ASAP cd08834
ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation ...
20-122 2.94e-21

ArfGAP domain of ASAP (Arf GAP, SH3, ANK repeat and PH domains) subfamily of ADP-ribosylation factor GTPase-activating proteins; The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. Both ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350063 [Multi-domain]  Cd Length: 117  Bit Score: 88.05  E-value: 2.94e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVPLfYYR 98
Cdd:cd08834   14 GNDVCCDCGSPDPTWLSTNLGILTCIECSGVHRELGvHVSRIQSLTLDNLGTSELLLARNLGNEGFNEIMEANLPP-GYK 92
                         90       100
                 ....*....|....*....|....
gi 387914224  99 PQASDCMVLKDQWIRAKYEREEFT 122
Cdd:cd08834   93 PTPNSDMEERKDFIRAKYVEKKFV 116
ArfGap_AGFG cd08838
ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ...
10-118 3.52e-21

ArfGAP domain of the AGFG subfamily (ArfGAP domain and FG repeat-containing proteins); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350067 [Multi-domain]  Cd Length: 113  Bit Score: 87.64  E-value: 3.52e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  10 KELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSgiSKVKSIRLDFWEDDLVERMKTQGNLVAK---- 85
Cdd:cd08838    2 KILRELLKLPENKRCFDCGQRGPTYVNLTFGTFVCTTCSGIHREFN--HRVKSISMSTFTPEEVEFLQAGGNEVARkiwl 79
                         90       100       110
                 ....*....|....*....|....*....|....
gi 387914224  86 -NHFEADVPlfyyRPQASDCMVLKDqWIRAKYER 118
Cdd:cd08838   80 aKWDPRTDP----EPDSGDDQKIRE-FIRLKYVD 108
ArfGap_ARAP cd08837
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily ...
20-93 4.19e-20

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing proteins; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics.


Pssm-ID: 350066 [Multi-domain]  Cd Length: 116  Bit Score: 84.74  E-value: 4.19e-20
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLD--FWEDDLVERMKTQGNLVAKNHFEADVP 93
Cdd:cd08837   12 ANRFCADCGAPDPDWASINLCVVICKQCAGEHRSLgSNISKVRSLKMDtkVWTEELVELFLKLGNDRANRFWAANLP 88
ArfGap_GIT cd08833
The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein ...
24-116 1.13e-18

The GIT subfamily of ADP-ribosylation factor GTPase-activating proteins; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350062 [Multi-domain]  Cd Length: 109  Bit Score: 80.81  E-value: 1.13e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  24 CADCGIPEPEWASYTLGIFVCLNCSGMHRNLSG-ISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADVP----LFYYR 98
Cdd:cd08833   11 CADCSAPDPEWASINRGVLICDECCSIHRSLGRhISQVKSLRKDQWPPSLLEMVQTLGNNGANSIWEHSLLdpsqSGKRK 90
                         90
                 ....*....|....*....
gi 387914224  99 PQASD-CMVLKDQWIRAKY 116
Cdd:cd08833   91 PIPPDpVHPTKEEFIKAKY 109
ArfGap_ASAP1 cd08848
ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); ...
14-122 2.79e-18

ArfGAP domain of ASAP1 (ArfGAP with SH3 domain, ANK repeat and PH domain-containing protein 1); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350073 [Multi-domain]  Cd Length: 122  Bit Score: 80.08  E-value: 2.79e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  14 ELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFEADV 92
Cdd:cd08848    8 DVQRLPGNEVCCDCGSPDPTWLSTNLGILTCIECSGIHREMGvHISRIQSLELDKLGTSELLLAKNVGNNSFNDIMEGNL 87
                         90       100       110
                 ....*....|....*....|....*....|
gi 387914224  93 PLFYYRPQASDCMVLKDQWIRAKYEREEFT 122
Cdd:cd08848   88 PSPSPKPSPSSDMTARKEYITAKYVEHRFS 117
ArfGap_ASAP3 cd17900
ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ...
8-121 1.32e-17

ArfGAP domain of ASAP3 (ArfGAP with ANK repeat and PH domain-containing protein 3); The ArfGAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP1 and ASAP2, ASAP3 do not have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport. ASAP3 is a focal adhesion-associated ArfGAP that functions in cell migration and invasion. Similar to ASAP1, the GAP activity of ASAP3 is strongly enhanced by PIP2 via PH domain. Like ASAP1, ASAP3 associates with focal adhesions and circular dorsal ruffles. However, unlike ASAP1, ASAP3 does not localize to invadopodia or podosomes. ASAP 1 and 3 have been implicated in oncogenesis, as ASAP1 is highly expressed in metastatic breast cancer and ASAP3 in hepatocellular carcinoma.


Pssm-ID: 350087 [Multi-domain]  Cd Length: 124  Bit Score: 78.35  E-value: 1.32e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   8 NKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLsGI--SKVKSIRLDFWEDDLVERMKTQGNLVAK 85
Cdd:cd17900    2 TKLLIAEVKSRPGNSQCCDCGAPDPTWLSTNLGILTCIECSGIHREL-GVrySRIQSLTLDLLSTSELLLAVSMGNTRFN 80
                         90       100       110
                 ....*....|....*....|....*....|....*..
gi 387914224  86 NHFEADVP-LFYYRPQASDCMVLKDQWIRAKYEREEF 121
Cdd:cd17900   81 EVMEATLPaHGGPKPSAESDMGTRKDYIMAKYVEHRF 117
ArfGap_ARAP1 cd17901
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily ...
20-93 3.73e-17

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 1; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP1 localizes to the plasma membrane, the Golgi complex, and endosomal compartments. It displays PI(3,4,5)P3-dependent ArfGAP activity that regulates Arf-, RhoA-, and Cdc42-dependent cellular events. For example, ARAP1 inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome.


Pssm-ID: 350088 [Multi-domain]  Cd Length: 116  Bit Score: 76.77  E-value: 3.73e-17
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLD--FWEDDLVERMKTQGNLVAKNHFEADVP 93
Cdd:cd17901   12 SNRFCADCGSPKPDWASVNLCVVICKRCAGEHRGLgPSVSKVRSLKMDrkVWTEELIELFLLLGNGKANQFWAANVP 88
ArfGap_ARAP2 cd08856
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily ...
21-121 2.63e-16

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 2; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP2 localizes to the cell periphery and on focal adhesions composed of paxillin and vinculin, and functions downstream of RhoA to regulate focal adhesion dynamics. ARAP2 is a PI(3,4,5)P3-dependent Arf6 GAP that binds RhoA-GTP, but it lacks the predicted catalytic arginine in the RhoGAP domain and does not have RhoGAP activity. ARAP2 reduces Rac1oGTP levels by reducing Arf6oGTP levels through GAP activity. AGAP2 also binds to and regulates focal adhesion kinase (FAK). Thus, ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology.


Pssm-ID: 350081 [Multi-domain]  Cd Length: 121  Bit Score: 74.56  E-value: 2.63e-16
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  21 NSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLD--FWEDDLVERMKTQGNLVAKNHFEADVPlfyy 97
Cdd:cd08856   18 NRSCADCKAPDPDWASINLCVVICKKCAGQHRSLgPKDSKVRSLKMDasIWSNELIELFIVVGNKPANLFWAANLF---- 93
                         90       100
                 ....*....|....*....|....*...
gi 387914224  98 rPQASDCMV----LKDQWIRAKYEREEF 121
Cdd:cd08856   94 -SEEDLHMDsdveQRTPFITQKYKEGKF 120
ArfGap_ARAP3 cd17902
ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily ...
21-93 4.79e-15

ArfGap with Rho-Gap domain, ANK repeat and PH domain-containing protein 3; The ARAP subfamily includes three members, ARAP1-3, and belongs to the ADP-ribosylation factor GTPase-activating proteins (Arf GAPs) family of proteins that promotes the hydrolysis of GTP bound to Arf, thereby inactivating Arf signaling. The function of Arfs is dependent on GAPs and guanine nucleotide exchange factors (GEFs), which allow Arfs to cycle between the GDP-bound and GTP-bound forms. In addition to the Arf GAP domain, ARAPs contain the SAM (sterile-alpha motif) domain, 5 pleckstrin homology (PH) domains, the Rho-GAP domain, the Ras-association domain, and ANK repeats. ARAPs show phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent GAP activity toward Arf6. ARAPs play important roles in endocytic trafficking, cytoskeleton reorganization in response to growth factors stimulation, and focal adhesion dynamics. ARAP3 possesses a unique dual-specificity GAP activity for Arf6 and RhoA regulated by PI(3,4,5)P3 and a small GTPase Rap1-GTP. The RhoGAP activity of ARAP3 is enhanced by direct binding of Rap1-GTP to the Ras-association (RA) domain. ARAP3 is involved in regulation of cell shape and adhesion.


Pssm-ID: 350089 [Multi-domain]  Cd Length: 116  Bit Score: 70.71  E-value: 4.79e-15
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 387914224  21 NSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNL-SGISKVKSIRLD--FWEDDLVERMKTQGNLVAKNHFEADVP 93
Cdd:cd17902   13 NRFCADCHASSPDWASINLCVVICKQCAGQHRSLgSGISKVQSLKLDtsVWSNEIVQLFIVLGNDRANRFWAARLP 88
ArfGap_ASAP2 cd08849
ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2) ...
10-121 8.59e-14

ArfGAP domain of ASAP2 (ArfGAP2 with SH3 domain, ANK repeat and PH domain-containing protein 2); The Arf GAPs are a family of multidomain proteins with a common catalytic domain that promotes the hydrolysis of GTP bound to Arf , thereby inactivating Arf signaling. ASAP-subfamily GAPs include three members: ASAP1, ASAP2, ASAP3. The ASAP subfamily comprises Arf GAP, SH3, ANK repeat and PH domains. From the N-terminus, each member has a BAR, PH, Arf GAP, ANK repeat, and proline rich domains. Unlike ASAP3, ASAP1 and ASAP2 also have an SH3 domain at the C-terminus. ASAP1 and ASAP2 show strong GTPase-activating protein (GAP) activity toward Arf1 and Arf5 and weak activity toward Arf6. ASAP1 is a target of Src and FAK signaling that regulates focal adhesions, circular dorsal ruffles (CDR), invadopodia, and podosomes. ASAP1 GAP activity is synergistically stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid. ASAP2 is believed to function as an ArfGAP that controls ARF-mediated vesicle budding when recruited to Golgi membranes. It also functions as a substrate and downstream target for protein tyrosine kinases Pyk2 and Src, a pathway that may be involved in the regulation of vesicular transport.


Pssm-ID: 350074 [Multi-domain]  Cd Length: 123  Bit Score: 67.31  E-value: 8.59e-14
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  10 KELL-ELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLsGI--SKVKSIRLDFWEDDLVERMKTQGNLVAKN 86
Cdd:cd08849    3 KEIIsEVQRMTGNDVCCDCGAPDPTWLSTNLGILTCIECSGIHREL-GVhySRMQSLTLDVLGTSELLLAKNIGNAGFNE 81
                         90       100       110
                 ....*....|....*....|....*....|....*.
gi 387914224  87 HFEADVPLF-YYRPQASDCMVLKDQWIRAKYEREEF 121
Cdd:cd08849   82 IMEACLPAEdVVKPNPGSDMNARKDYITAKYIERRY 117
PH smart00233
Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The ...
259-361 2.40e-12

Pleckstrin homology domain; Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.


Pssm-ID: 214574 [Multi-domain]  Cd Length: 102  Bit Score: 62.57  E-value: 2.40e-12
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDP---LDAFAQGEVFIGNSECHYSVKEglqsrsRGNRWSHGFTLVT 335
Cdd:smart00233   3 KEGWLYKKSGGGKKSWKKRYFVLF--NSTLLYYKSKkdkKSYKPKGSIDLSGCTVREAPDP------DSSKKPHCFEIKT 74
                           90       100
                   ....*....|....*....|....*..
gi 387914224   336 PERA-FLLTCENEQDFKQWMAAFREII 361
Cdd:smart00233  75 SDRKtLLLQAESEEEREKWVEALRKAI 101
ArfGap_ArfGap3 cd09028
Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
21-88 5.01e-12

Arf1 GTPase-activating protein 3; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350085 [Multi-domain]  Cd Length: 120  Bit Score: 62.39  E-value: 5.01e-12
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  21 NSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDF-WEDDLVERMKTQGNLVAKNHF 88
Cdd:cd09028   19 NKVCFDCGAKNPSWASITYGVFLCIDCSGIHRSLGvHLSFIRSTELDSnWSWFQLRCMQVGGNANASAFF 88
ArfGap_ArfGap2 cd09029
Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) ...
8-88 1.23e-11

Arf1 GTPase-activating protein 2; ArfGAP (ADP Ribosylation Factor GTPase Activating Protein) domain is a part of ArfGap1-like proteins that play a crucial role in controlling of membrane trafficking, particularly in the formation of COPI (coat protein complex I)-coated vesicles on Golgi membranes. The ArfGAP1 protein subfamily consists of three members: ArfGAP1 (Gcs1p in yeast), ArfGAP2 and ArfGAP3 (both are homologs of yeast Glo3p). ArfGAP2/3 are closely related, but with little similarity to ArfGAP1, except the catalytic ArfGAP domain. They promote hydrolysis of GTP bound to the small G protein ADP-ribosylation factor 1 (Arf1), which leads to the dissociation of coat proteins from Golgi-derived membranes and vesicles. Dissociation of the coat proteins is required for the fusion of these vesicles with target compartments. Thus, the GAP catalytic activity plays a key role in the formation of COPI vesicles from Golgi membrane. In contrast to ArfGAP1, which displays membrane curvature-dependent ArfGAP activity, ArfGAP2 and ArfGAP3 activities are dependent on coatomer (the core COPI complex) which required for efficient recruitment of ArfGAP2 and ArfGAP3 to the Golgi membrane. Accordingly, ArfGAP2/3 has been implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Unlike ArfGAP1, which is controlled by membrane curvature through its amphipathic lipid packing sensor (ALPS) motifs, ArfGAP2/3 do not possess ALPS motif.


Pssm-ID: 350086 [Multi-domain]  Cd Length: 120  Bit Score: 61.23  E-value: 1.23e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   8 NKKELLELLKQ----HGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDF-WEDDLVERMKTQGN 81
Cdd:cd09029    2 NKTEIQTLFKRlraiPTNKACFDCGAKNPSWASITYGVFLCIDCSGVHRSLGvHLSFIRSTELDSnWNWFQLRCMQVGGN 81

                 ....*..
gi 387914224  82 LVAKNHF 88
Cdd:cd09029   82 ANATAFF 88
PLN03114 PLN03114
ADP-ribosylation factor GTPase-activating protein AGD10; Provisional
1-89 1.78e-11

ADP-ribosylation factor GTPase-activating protein AGD10; Provisional


Pssm-ID: 178661 [Multi-domain]  Cd Length: 395  Bit Score: 64.88  E-value: 1.78e-11
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   1 MMSDRDRNKKELLELLK-QHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKT 78
Cdd:PLN03114   1 MASENLNDKISVFKKLKaKSDNKICFDCNAKNPTWASVTYGIFLCIDCSAVHRSLGvHISFVRSTNLDSWSSEQLKMMIY 80
                         90
                 ....*....|.
gi 387914224  79 QGNLVAKNHFE 89
Cdd:PLN03114  81 GGNNRAQVFFK 91
PH pfam00169
PH domain; PH stands for pleckstrin homology.
259-361 5.31e-11

PH domain; PH stands for pleckstrin homology.


Pssm-ID: 459697 [Multi-domain]  Cd Length: 105  Bit Score: 59.11  E-value: 5.31e-11
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPL---DAFAQGEVFIGNSEchysVKEGLQSRSRGNRWSHGFTLV- 334
Cdd:pfam00169   3 KEGWLLKKGGGKKKSWKKRYFVLF--DGSLLYYKDDKsgkSKEPKGSISLSGCE----VVEVVASDSPKRKFCFELRTGe 76
                          90       100
                  ....*....|....*....|....*...
gi 387914224  335 -TPERAFLLTCENEQDFKQWMAAFREII 361
Cdd:pfam00169  77 rTGKRTYLLQAESEEERKDWIKAIQSAI 104
PH cd00821
Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are ...
259-357 1.24e-09

Pleckstrin homology (PH) domain; PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 275388 [Multi-domain]  Cd Length: 92  Bit Score: 54.86  E-value: 1.24e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPLDAFAQGEVFIgNSECHYSVKEGLQSRSRgnrwsHGFTLVTP-E 337
Cdd:cd00821    1 KEGYLLKRGGGGLKSWKKRWFVLF--EGVLLYYKSKKDSSYKPKGSI-PLSGILEVEEVSPKERP-----HCFELVTPdG 72
                         90       100
                 ....*....|....*....|
gi 387914224 338 RAFLLTCENEQDFKQWMAAF 357
Cdd:cd00821   73 RTYYLQADSEEERQEWLKAL 92
ArfGap_GIT2 cd08847
GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
24-116 1.28e-09

GIT2 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350072 [Multi-domain]  Cd Length: 111  Bit Score: 55.41  E-value: 1.28e-09
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  24 CADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFE------ADVPLFY 96
Cdd:cd08847   11 CADCSTSDPRWASVNRGVLICDECCSVHRSLGrHISQVRHLKHTSWPPTLLQMVQTLYNNGANSIWEhslldpASIMSGK 90
                         90       100
                 ....*....|....*....|.
gi 387914224  97 YRPQASDCM-VLKDQWIRAKY 116
Cdd:cd08847   91 RKANPQDKVhPNKAEFIRAKY 111
ArfGap_GIT1 cd08846
GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting ...
24-116 1.06e-08

GIT1 GTPase activating protein for Arf; The GIT (G-protein coupled receptor kinase-interacting protein) subfamily includes GIT1 and GIT2, which have three ANK repeats, a Spa-homology domain (SHD), a coiled-coil domain and a C-terminal paxillin-binding site (PBS). The GIT1/2 proteins are GTPase-activating proteins that function as an inactivator of Arf signaling, and interact with the PIX/Cool family of Rac/Cdc42 guanine nucleotide exchange factors (GEFs). Unlike other ArfGAPs, GIT and PIX (Pak-interacting exchange factor) proteins are tightly associated to form an oligomeric complex that acts as a scaffold and signal integrator that can be recruited for multiple signaling pathways. The GIT/PIX complex functions as a signaling scaffold by binding to specific protein partners. As a result, the complex is transported to specific cellular locations. For instance, the GIT partners paxillin or integrin-alpha4 (to focal adhesions), piccolo and liprin-alpha (to synapses), and the beta-PIX partner Scribble (to epithelial cell-cell contacts and synapses). Moreover, the GIT/PIT complex functions to integrate signals from multiple GTP-binding protein and protein kinase pathways to regulate the actin cytoskeleton and thus cell polarity, adhesion and migration.


Pssm-ID: 350071 [Multi-domain]  Cd Length: 111  Bit Score: 52.80  E-value: 1.06e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  24 CADCGIPEPEWASYTLGIFVCLNCSGMHRNLS-GISKVKSIRLDFWEDDLVERMKTQGNLVAKNHFE------ADVPLFY 96
Cdd:cd08846   11 CADCSAPDPGWASINRGVLICDECCSVHRSLGrHISIVKHLRHSAWPPTLLQMVHTLASNGANSIWEhslldpAQVQSGR 90
                         90       100
                 ....*....|....*....|.
gi 387914224  97 YRPQASDCM-VLKDQWIRAKY 116
Cdd:cd08846   91 RKANPQDKVhPTKSEFIRAKY 111
ArfGap_AGFG1 cd08857
ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain ...
10-85 2.01e-08

ArfGAP domain of AGFG1 (ArfGAP domain and FG repeat-containing protein 1); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG1 (alias: HIV-1 Rev binding protein, HRB; Rev interacting protein, RIP; Rev/Rex activating domain-binding protein, RAB) and AGFG2 are involved in the maintenance and spread of immunodeficiency virus type 1 (HIV-1) infection. The ArfGAP domain of AGFG1 is related to nucleoporins, which is a class of proteins that mediate nucleocytoplasmic transport. AGFG1 plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs, possibly together by the nuclear export receptor CRM1. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG1 promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350082 [Multi-domain]  Cd Length: 116  Bit Score: 51.96  E-value: 2.01e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 387914224  10 KELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSGISKVKSIRLDFWEDDLVERMKTQGNLVAK 85
Cdd:cd08857    3 KMLREMTSLPHNRKCFDCDQRGPTYANMTVGSFVCTSCSGILRGLNPPHRVKSISMTTFTQQEIEFLQKHGNEVCK 78
PLN03119 PLN03119
putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional
4-138 2.78e-08

putative ADP-ribosylation factor GTPase-activating protein AGD14; Provisional


Pssm-ID: 178666  Cd Length: 648  Bit Score: 55.62  E-value: 2.78e-08
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   4 DRDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSgiSKVKSIRLDFWEDDLVERMKTQGNLV 83
Cdd:PLN03119   6 EEERNEKIIRGLMKLPPNRRCINCNSLGPQYVCTTFWTFVCMACSGIHREFT--HRVKSVSMSKFTSKEVEVLQNGGNQR 83
                         90       100       110       120       130
                 ....*....|....*....|....*....|....*....|....*....|....*.
gi 387914224  84 AKNHFEADVPLFYYR-PQASDCMVLKdQWIRAKYEREEFTGVDSQRQAAYTSGKRV 138
Cdd:PLN03119  84 AREIYLKNWDHQRQRlPENSNAERVR-EFIKNVYVQKKYAGANDADKPSKDSQDHV 138
PLN03131 PLN03131
hypothetical protein; Provisional
4-91 1.20e-07

hypothetical protein; Provisional


Pssm-ID: 178677 [Multi-domain]  Cd Length: 705  Bit Score: 53.63  E-value: 1.20e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224   4 DRDRNKKELLELLKQHGNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSgiSKVKSIRLDFWEDDLVERMKTQGNLV 83
Cdd:PLN03131   6 EEERNEKIIRGLMKLPPNRRCINCNSLGPQFVCTNFWTFICMTCSGIHREFT--HRVKSVSMSKFTSQDVEALQNGGNQR 83

                 ....*...
gi 387914224  84 AKNHFEAD 91
Cdd:PLN03131  84 AREIYLKD 91
PH1_PLEKHH1_PLEKHH2 cd13282
Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 ...
260-361 4.27e-07

Pleckstrin homology (PH) domain containing, family H (with MyTH4 domain) members 1 and 2 (PLEKHH1) PH domain, repeat 1; PLEKHH1 and PLEKHH2 (also called PLEKHH1L) are thought to function in phospholipid binding and signal transduction. There are 3 Human PLEKHH genes: PLEKHH1, PLEKHH2, and PLEKHH3. There are many isoforms, the longest of which contain a FERM domain, a MyTH4 domain, two PH domains, a peroximal domain, a vacuolar domain, and a coiled coil stretch. The FERM domain has a cloverleaf tripart structure (FERM_N, FERM_M, FERM_C/N, alpha-, and C-lobe/A-lobe, B-lobe, C-lobe/F1, F2, F3). The C-lobe/F3 within the FERM domain is part of the PH domain family. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241436  Cd Length: 96  Bit Score: 47.68  E-value: 4.27e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 260 EGYMEKTGpTQREPFKKRWFTLDalDRRLMYLKDPLDAF--AQGEVFIgNSECHYSVKEGLQSrsrgnrwshgFTLVTPE 337
Cdd:cd13282    2 AGYLTKLG-GKVKTWKRRWFVLK--NGELFYYKSPNDVIrkPQGQIAL-DGSCEIARAEGAQT----------FEIVTEK 67
                         90       100
                 ....*....|....*....|....
gi 387914224 338 RAFLLTCENEQDFKQWMAAFREII 361
Cdd:cd13282   68 RTYYLTADSENDLDEWIRVIQNVL 91
ArfGap_AGFG2 cd17903
ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain ...
20-121 6.78e-07

ArfGAP domain of AGFG2 (ArfGAP domain and FG repeat-containing protein 2); The ArfGAP domain and FG repeat-containing proteins (AFGF) subfamily of Arf GTPase-activating proteins consists of the two structurally-related members: AGFG1 and AGFG2. AGFG2 is a member of the HIV-1 Rev binding protein (HRB) family and contains one Arf-GAP zinc finger domain, several Phe-Gly (FG) motifs, and four Asn-Pro-Phe (NPF) motifs. AGFG2 interacts with Eps15 homology (EH) domains and plays a role in the Rev export pathway, which mediates the nucleocytoplasmic transfer of proteins and RNAs. In humans, the presence of the FG repeat motifs (11 in AGFG1 and 7 in AGFG2) are thought to be required for these proteins to act as HIV-1 Rev cofactors. Hence, AGFG promotes movement of Rev-responsive element-containing RNAs from the nuclear periphery to the cytoplasm, which is an essential step for HIV-1 replication.


Pssm-ID: 350090 [Multi-domain]  Cd Length: 116  Bit Score: 47.68  E-value: 6.78e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224  20 GNSQCADCGIPEPEWASYTLGIFVCLNCSGMHRNLSGISKVKSIRLDFWEDDLVERMKTQGNLVAKN----HFEADVPLF 95
Cdd:cd17903   13 ANRHCFECAQRGVTYVDITVGSFVCTTCSGLLRGLNPPHRVKSISMTTFTEPEVLFLQARGNEVCRKiwlgLFDARTSLI 92
                         90       100
                 ....*....|....*....|....*.
gi 387914224  96 yyrPQASDCMVLKdQWIRAKYEREEF 121
Cdd:cd17903   93 ---PDSRDPQKVK-EFLQEKYEKKRW 114
PH_TBC1D2A cd01265
TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1 ...
261-354 8.23e-07

TBC1 domain family member 2A pleckstrin homology (PH) domain; TBC1D2A (also called PARIS-1/Prostate antigen recognized and identified by SEREX 1 and ARMUS) contains a PH domain and a TBC-type GTPase catalytic domain. TBC1D2A integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Activated Rac1 recruits TBC1D2A to locally inactivate Rab7 via its C-terminal TBC/RabGAP domain and facilitate E-cadherin degradation in lysosomes. The TBC1D2A PH domain mediates localization at cell-cell contacts and coprecipitates with cadherin complexes. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269966  Cd Length: 102  Bit Score: 46.93  E-value: 8.23e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 261 GYMEKTGPTQREpFKKRWFTLDALDRRLMYLKDPLDAFAQGEVFIGNSECHYSVKEGlqsrsrgnrwSHGFTLVTPERAF 340
Cdd:cd01265    7 NKLETRGLGLKG-WKRRWFVLDESKCQLYYYRSPQDATPLGSIDLSGAAFSYDPEAE----------PGQFEIHTPGRVH 75
                         90
                 ....*....|....
gi 387914224 341 LLTCENEQDFKQWM 354
Cdd:cd01265   76 ILKASTRQAMLYWL 89
PH1_ARAP cd13253
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
260-362 1.82e-06

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 1; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the first PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270073  Cd Length: 94  Bit Score: 45.84  E-value: 1.82e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 260 EGYMEKTGPTQRE-PFKKRWFTLDALDrrLMYLKDPLDAFAQGEVfignsechySVKEGLQSRSRG-NRwshgFTLVTPE 337
Cdd:cd13253    3 SGYLDKQGGQGNNkGFQKRWVVFDGLS--LRYFDSEKDAYSKRII---------PLSAISTVRAVGdNK----FELVTTN 67
                         90       100
                 ....*....|....*....|....*
gi 387914224 338 RAFLLTCENEQDFKQWMAAFREIIL 362
Cdd:cd13253   68 RTFVFRAESDDERNLWCSTLQAAIS 92
PH_ACAP cd13250
ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP ...
259-361 5.56e-06

ArfGAP with coiled-coil, ankyrin repeat and PH domains Pleckstrin homology (PH) domain; ACAP (also called centaurin beta) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) by which it controls actin remodeling and membrane trafficking. ACAP contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain, a phospholipid-binding domain, a PH domain, a GAP domain, and four ankyrin repeats. The AZAPs constitute a family of Arf GAPs that are characterized by an NH2-terminal pleckstrin homology (PH) domain and a central Arf GAP domain followed by two or more ankyrin repeats. On the basis of sequence and domain organization, the AZAP family is further subdivided into four subfamilies: 1) the ACAPs contain an NH2-terminal bin/amphiphysin/Rvs (BAR) domain (a phospholipid-binding domain that is thought to sense membrane curvature), a single PH domain followed by the GAP domain, and four ankyrin repeats; 2) the ASAPs also contain an NH2-terminal BAR domain, the tandem PH domain/GAP domain, three ankyrin repeats, two proline-rich regions, and a COOH-terminal Src homology 3 domain; 3) the AGAPs contain an NH2-terminal GTPase-like domain (GLD), a split PH domain, and the GAP domain followed by four ankyrin repeats; and 4) the ARAPs contain both an Arf GAP domain and a Rho GAP domain, as well as an NH2-terminal sterile-a motif (SAM), a proline-rich region, a GTPase-binding domain, and five PH domains. PMID 18003747 and 19055940 Centaurin can bind to phosphatidlyinositol (3,4,5)P3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270070  Cd Length: 98  Bit Score: 44.52  E-value: 5.56e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDplDAFAQGEVFIGN-SEChySVKEgLQSRSRgnRWShgFTLVTPE 337
Cdd:cd13250    1 KEGYLFKRSSNAFKTWKRRWFSLQ--NGQLYYQKR--DKKDEPTVMVEDlRLC--TVKP-TEDSDR--RFC--FEVISPT 69
                         90       100
                 ....*....|....*....|....
gi 387914224 338 RAFLLTCENEQDFKQWMAAFREII 361
Cdd:cd13250   70 KSYMLQAESEEDRQAWIQAIQSAI 93
PH_PEPP1_2_3 cd13248
Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; ...
259-359 1.53e-05

Phosphoinositol 3-phosphate binding proteins 1, 2, and 3 pleckstrin homology (PH) domain; PEPP1 (also called PLEKHA4/PH domain-containing family A member 4 and RHOXF1/Rhox homeobox family member 1), and related homologs PEPP2 (also called PLEKHA5/PH domain-containing family A member 5) and PEPP3 (also called PLEKHA6/PH domain-containing family A member 6), have PH domains that interact specifically with PtdIns(3,4)P3. Other proteins that bind PtdIns(3,4)P3 specifically are: TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns3P AtPH1, and Ptd- Ins(3,5)P2 (centaurin-beta2). All of these proteins contain at least 5 of the 6 conserved amino acids that make up the putative phosphatidylinositol 3,4,5- trisphosphate-binding motif (PPBM) located at their N-terminus. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270068  Cd Length: 104  Bit Score: 43.42  E-value: 1.53e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 259 MEGYMEKTGPTQREPFKKRWFTLDalDRRLMYLKDPLDAFAQGEVFIGNsechYSVKEGLQSRSRGNRwsHGFTLVTPE- 337
Cdd:cd13248    9 MSGWLHKQGGSGLKNWRKRWFVLK--DNCLYYYKDPEEEKALGSILLPS----YTISPAPPSDEISRK--FAFKAEHANm 80
                         90       100
                 ....*....|....*....|..
gi 387914224 338 RAFLLTCENEQDFKQWMAAFRE 359
Cdd:cd13248   81 RTYYFAADTAEEMEQWMNAMSL 102
PH2_MyoX cd13296
Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular ...
263-369 5.74e-05

Myosin X Pleckstrin homology (PH) domain, repeat 2; MyoX, a MyTH-FERM myosin, is a molecular motor that has crucial functions in the transport and/or tethering of integrins in the actin-based extensions known as filopodia, microtubule binding, and in netrin-mediated axon guidance. It functions as a dimer. MyoX walks on bundles of actin, rather than single filaments, unlike the other unconventional myosins. MyoX is present in organisms ranging from humans to choanoflagellates, but not in Drosophila and Caenorhabditis elegans.MyoX consists of a N-terminal motor/head region, a neck made of 3 IQ motifs, and a tail consisting of a coiled-coil domain, a PEST region, 3 PH domains, a myosin tail homology 4 (MyTH4), and a FERM domain at its very C-terminus. The first PH domain in the MyoX tail is a split-PH domain, interupted by the second PH domain such that PH 1a and PH 1b flanks PH 2. The third PH domain (PH 3) follows the PH 1b domain. This cd contains the second PH repeat. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270108  Cd Length: 103  Bit Score: 41.68  E-value: 5.74e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 263 MEKTGPT---QREPFKKRWFTLDalDRRLMYLKDPLDafaqGEVFIGNSEchysVKEGLQSRSRGNRwSHGFTLVTPERA 339
Cdd:cd13296    6 TKKGGGSstlSRRNWKSRWFVLR--DTVLKYYENDQE----GEKLLGTID----IRSAKEIVDNDPK-ENRLSITTEERT 74
                         90       100       110
                 ....*....|....*....|....*....|
gi 387914224 340 FLLTCENEQDFKQWMAafreIILRPMSAQD 369
Cdd:cd13296   75 YHLVAESPEDASQWVN----VLTRVISATD 100
PH_Gab-like cd13324
Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are ...
260-353 2.76e-04

Grb2-associated binding protein family Pleckstrin homology (PH) domain; Gab proteins are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. There are 3 families: Gab1, Gab2, and Gab3. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270133  Cd Length: 112  Bit Score: 40.09  E-value: 2.76e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 260 EGYMEKTGPTQ---REPFKKRWFTLDALDRR-----LMYLKDplDAFAQGEVFIGNSECHySVKEGLQSRSRGNRWSHGF 331
Cdd:cd13324    4 EGWLTKSPPEKkiwRAAWRRRWFVLRSGRLSggqdvLEYYTD--DHCKKLKGIIDLDQCE-QVDAGLTFEKKKFKNQFIF 80
                         90       100
                 ....*....|....*....|..
gi 387914224 332 TLVTPERAFLLTCENEQDFKQW 353
Cdd:cd13324   81 DIRTPKRTYYLVAETEEEMNKW 102
PH_DAPP1 cd10573
Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; ...
260-358 6.81e-04

Dual Adaptor for Phosphotyrosine and 3-Phosphoinositides Pleckstrin homology (PH) domain; DAPP1 (also known as PHISH/3' phosphoinositide-interacting SH2 domain-containing protein or Bam32) plays a role in B-cell activation and has potential roles in T-cell and mast cell function. DAPP1 promotes B cell receptor (BCR) induced activation of Rho GTPases Rac1 and Cdc42, which feed into mitogen-activated protein kinases (MAPK) activation pathways and affect cytoskeletal rearrangement. DAPP1can also regulate BCR-induced activation of extracellular signal-regulated kinase (ERK), and c-jun NH2-terminal kinase (JNK). DAPP1 contains an N-terminal SH2 domain and a C-terminal pleckstrin homology (PH) domain with a single tyrosine phosphorylation site located centrally. DAPP1 binds strongly to both PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The PH domain is essential for plasma membrane recruitment of PI3K upon cell activation. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269977 [Multi-domain]  Cd Length: 96  Bit Score: 38.46  E-value: 6.81e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 260 EGYMEKTGPTqREPFKKRWFTLdaldRR--LMYLKDPLDAFAQGEVFIgnSECHYSVKEGLQSRSrgnrwsHGFTLVTPE 337
Cdd:cd10573    6 EGYLTKLGGI-VKNWKTRWFVL----RRneLKYFKTRGDTKPIRVLDL--RECSSVQRDYSQGKV------NCFCLVFPE 72
                         90       100
                 ....*....|....*....|.
gi 387914224 338 RAFLLTCENEQDFKQWMAAFR 358
Cdd:cd10573   73 RTFYMYANTEEEADEWVKLLK 93
PH_AtPH1 cd13276
Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all ...
137-232 1.42e-03

Arabidopsis thaliana Pleckstrin homolog (PH) 1 (AtPH1) PH domain; AtPH1 is expressed in all plant tissue and is proposed to be the plant homolog of human pleckstrin. Pleckstrin consists of two PH domains separated by a linker region, while AtPH has a single PH domain with a short N-terminal extension. AtPH1 binds PtdIns3P specifically and is thought to be an adaptor molecule since it has no obvious catalytic functions. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270095  Cd Length: 106  Bit Score: 38.07  E-value: 1.42e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 137 RVGELWKRGRDNGTFLKRNFILsqKEGTLqYYVKEAKG-----PKAVIRVAD-LNATLQPEKVGNPNGMQISYlkdgRTR 210
Cdd:cd13276    1 KAGWLEKQGEFIKTWRRRWFVL--KQGKL-FWFKEPDVtpyskPRGVIDLSKcLTVKSAEDATNKENAFELST----PEE 73
                         90       100
                 ....*....|....*....|..
gi 387914224 211 NMFVYHSKGKEIVDWLNAIRGA 232
Cdd:cd13276   74 TFYFIADNEKEKEEWIGAIGRA 95
PH_Gab2_2 cd13384
Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily ...
260-353 2.41e-03

Grb2-associated binding protein family pleckstrin homology (PH) domain; The Gab subfamily includes several Gab proteins, Drosophila DOS and C. elegans SOC-1. They are scaffolding adaptor proteins, which possess N-terminal PH domains and a C-terminus with proline-rich regions and multiple phosphorylation sites. Following activation of growth factor receptors, Gab proteins are tyrosine phosphorylated and activate PI3K, which generates 3-phosphoinositide lipids. By binding to these lipids via the PH domain, Gab proteins remain in proximity to the receptor, leading to further signaling. While not all Gab proteins depend on the PH domain for recruitment, it is required for Gab activity. Members here include insect, nematodes, and crustacean Gab2s. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241535  Cd Length: 115  Bit Score: 37.42  E-value: 2.41e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 260 EGYMEKTGPTQ---REPFKKRWFTL--DALDRR--LMYLKDPLDAFAQGEVfigNSECHYSVKEGLQSRSRGN-RWSHGF 331
Cdd:cd13384    6 EGWLTKSPPEKriwRAKWRRRYFVLrqSEIPGQyfLEYYTDRTCRKLKGSI---DLDQCEQVDAGLTFETKNKlKDQHIF 82
                         90       100
                 ....*....|....*....|..
gi 387914224 332 TLVTPERAFLLTCENEQDFKQW 353
Cdd:cd13384   83 DIRTPKRTYYLVADTEDEMNKW 104
PH_Osh3p_yeast cd13289
Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is ...
260-360 3.50e-03

Yeast oxysterol binding protein homolog 3 Pleckstrin homology (PH) domain; Yeast Osh3p is proposed to function in sterol transport and regulation of nuclear fusion during mating and of pseudohyphal growth as well as sphingolipid metabolism. Osh3 contains a N-GOLD (Golgi dynamics) domain, a PH domain, a FFAT motif (two phenylalanines in an acidic tract), and a C-terminal OSBP-related domain. GOLD domains are thought to mediate protein-protein interactions, but their role in ORPs are unknown. Oxysterol binding proteins are a multigene family that is conserved in yeast, flies, worms, mammals and plants. In general OSBPs and ORPs have been found to be involved in the transport and metabolism of cholesterol and related lipids in eukaryotes. They all contain a C-terminal oxysterol binding domain, and most contain an N-terminal PH domain. OSBP PH domains bind to membrane phosphoinositides and thus likely play an important role in intracellular targeting. They are members of the oxysterol binding protein (OSBP) family which includes OSBP, OSBP-related proteins (ORP), Goodpasture antigen binding protein (GPBP), and Four phosphate adaptor protein 1 (FAPP1). They have a wide range of purported functions including sterol transport, cell cycle control, pollen development and vessicle transport from Golgi recognize both PI lipids and ARF proteins. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 241443  Cd Length: 90  Bit Score: 36.47  E-value: 3.50e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 260 EGYMEKTGPTQREPFKKRWFTLDALDRRLMYLKDPLDAfAQGEVFIGNSechySVkeglqSRSRGNRWSH---GFTLvtp 336
Cdd:cd13289    3 EGWLLKKRRKKMQGFARRYFVLNFKYGTLSYYFNPNSP-VRGQIPLRLA----SI-----SASPRRRTIHidsGSEV--- 69
                         90       100
                 ....*....|....*....|....
gi 387914224 337 eraFLLTCENEQDFKQWMAAFREI 360
Cdd:cd13289   70 ---WHLKALNDEDFQAWMKALRKF 90
PH_KIFIA_KIFIB cd01233
KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA ...
275-357 4.13e-03

KIFIA and KIFIB protein pleckstrin homology (PH) domain; The kinesin-3 family motors KIFIA (Caenorhabditis elegans homolog unc-104) and KIFIB transport synaptic vesicle precursors that contain synaptic vesicle proteins, such as synaptophysin, synaptotagmin and the small GTPase RAB3A, but they do not transport organelles that contain plasma membrane proteins. They have a N-terminal motor domain, followed by a coiled-coil domain, and a C-terminal PH domain. KIF1A adopts a monomeric form in vitro, but acts as a processive dimer in vivo. KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein; this results in their different motor activities. KIF1A and KIF1B bind to RAB3 proteins through the adaptor protein mitogen-activated protein kinase (MAPK) -activating death domain (MADD; also calledDENN), which was first identified as a RAB3 guanine nucleotide exchange factor (GEF). PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269939  Cd Length: 103  Bit Score: 36.42  E-value: 4.13e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 275 KKRWFTLdaldRR---LMYlKDPLDAFAQGEVFIGNSECHYS--VKEGLQSRsrgnrwsHGFTLVTPERAFLLTCENEQD 349
Cdd:cd01233   23 VRRWVVL----RRpylHIY-SSEKDGDERGVINLSTARVEYSpdQEALLGRP-------NVFAVYTPTNSYLLQARSEKE 90

                 ....*...
gi 387914224 350 FKQWMAAF 357
Cdd:cd01233   91 MQDWLYAI 98
PH_Vav cd01223
Vav pleckstrin homology (PH) domain; Vav acts as a guanosine nucleotide exchange factor (GEF) ...
310-359 5.53e-03

Vav pleckstrin homology (PH) domain; Vav acts as a guanosine nucleotide exchange factor (GEF) for Rho/Rac proteins. They control processes including T cell activation, phagocytosis, and migration of cells. The Vav subgroup of Dbl GEFs consists of three family members (Vav1, Vav2, and Vav3) in mammals. Vav1 is preferentially expressed in the hematopoietic system, while Vav2 and Vav3 are described by broader expression patterns. Mammalian Vav proteins consist of a calponin homology (CH) domain, an acidic region, a catalytic Dbl homology (DH) domain, a PH domain, a zinc finger cysteine rich domain (C1/CRD), and an SH2 domain, flanked by two SH3 domains. In invertebrates such as Drosophila and C. elegans, Vav is missing the N-terminal SH3 domain. The DH domain is involved in RhoGTPase recognition and selectivity and stimulates the reorganization of the switch regions for GDP/GTP exchange. The PH domain is implicated in directing membrane localization, allosteric regulation of guanine nucleotide exchange activity, and as a phospholipid- dependent regulator of GEF activity. Vavs bind RhoGTPases including Rac1, RhoA, RhoG, and Cdc42, while other members of the GEF family are specific for a single RhoGTPase. This promiscuity is thought to be a result of its CRD. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but only a few (less than 10%) display strong specificity in binding inositol phosphates. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinases, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, cytoskeletal associated molecules, and in lipid associated enzymes.


Pssm-ID: 269930  Cd Length: 127  Bit Score: 36.46  E-value: 5.53e-03
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....
gi 387914224 310 CHYSVKEGLQSRS--RGNRWSHGFTLVTPER--AFLLTCENEQDFKQWMAAFRE 359
Cdd:cd01223   67 SEYRIEDDPSRRTlkRDKRWSYQFLLVHKQGktAYTLYAKTEELKKKWMEAIEM 120
PH_PLD cd01254
Phospholipase D pleckstrin homology (PH) domain; PLD hydrolyzes phosphatidylcholine to ...
275-360 7.76e-03

Phospholipase D pleckstrin homology (PH) domain; PLD hydrolyzes phosphatidylcholine to phosphatidic acid (PtdOH), which can bind target proteins. PLD contains a PH domain, a PX domain and four conserved PLD signature domains. The PLD PH domain is specific for bisphosphorylated inositides. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 269956  Cd Length: 136  Bit Score: 36.47  E-value: 7.76e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 275 KKRWFTLDalDRRLMYLKDPLDAFAQgEVFIGNSEchYSVKEGLQSRSRGNRwsHGFTLVTPERAFLLTCENEQDFKQWM 354
Cdd:cd01254   58 SKRWFIVK--DSFLAYVKDPDSGAIL-DVFLFDQE--FKVSRGGKETKYGSR--HGLKITNLSRKLKLKCKSERKAKQWV 130

                 ....*.
gi 387914224 355 AAFREI 360
Cdd:cd01254  131 ESIEEA 136
PH_3BP2 cd13308
SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes ...
253-361 8.22e-03

SH3 domain-binding protein 2 Pleckstrin homology (PH) domain; SH3BP2 (the gene that encodes the adaptor protein 3BP2), HD, ITU, IT10C3, and ADD1 are located near the Huntington's Disease Gene on Human Chromosome 4pl6.3. SH3BP2 lies in a region that is often missing in individuals with Wolf-Hirschhorn syndrome (WHS). Gain of function mutations in SH3BP2 causes enhanced B-cell antigen receptor (BCR)-mediated activation of nuclear factor of activated T cells (NFAT), resulting in a rare, genetic disorder called cherubism. This results in an increase in the signaling complex formation with Syk, phospholipase C-gamma2 (PLC-gamma2), and Vav1. It was recently discovered that Tankyrase regulates 3BP2 stability through ADP-ribosylation and ubiquitylation by the E3-ubiquitin ligase. Cherubism mutations uncouple 3BP2 from Tankyrase-mediated protein destruction, which results in its stabilization and subsequent hyperactivation of the Src, Syk, and Vav signaling pathways. SH3BP2 is also a potential negative regulator of the abl oncogene. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270118  Cd Length: 113  Bit Score: 35.84  E-value: 8.22e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 387914224 253 LTRNYAMEGYMEKTGPTQREP--FKKRWFTLdaLDRRLMYLKDPLDAFAQGEVFIGNsechYSVKEGLQSRSRgNRWshG 330
Cdd:cd13308    5 LPRDVIHSGTLTKKGGSQKTLqnWQLRYVII--HQGCVYYYKNDQSAKPKGVFSLNG----YNRRAAEERTSK-LKF--V 75
                         90       100       110
                 ....*....|....*....|....*....|....
gi 387914224 331 FTLVTP---ERAFLLTCENEQDFKQWMAAFREII 361
Cdd:cd13308   76 FKIIHLspdHRTWYFAAKSEDEMSEWMEYIRREI 109
PH2_ARAP cd13254
ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, ...
328-358 8.34e-03

ArfGAP with RhoGAP domain, ankyrin repeat and PH domain Pleckstrin homology (PH) domain, repeat 2; ARAP proteins (also called centaurin delta) are phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins that modulate actin cytoskeleton remodeling by regulating ARF and RHO family members. They bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding. There are 3 mammalian ARAP proteins: ARAP1, ARAP2, and ARAP3. All ARAP proteins contain a N-terminal SAM (sterile alpha motif) domain, 5 PH domains, an ArfGAP domain, 2 ankyrin domain, A RhoGap domain, and a Ras-associating domain. This hierarchy contains the second PH domain in ARAP. PH domains have diverse functions, but in general are involved in targeting proteins to the appropriate cellular location or in the interaction with a binding partner. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. Less than 10% of PH domains bind phosphoinositide phosphates (PIPs) with high affinity and specificity. PH domains are distinguished from other PIP-binding domains by their specific high-affinity binding to PIPs with two vicinal phosphate groups: PtdIns(3,4)P2, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 which results in targeting some PH domain proteins to the plasma membrane. A few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.


Pssm-ID: 270074  Cd Length: 90  Bit Score: 35.47  E-value: 8.34e-03
                         10        20        30
                 ....*....|....*....|....*....|.
gi 387914224 328 SHGFTLVTPERAFLLTCENEQDFKQWMAAFR 358
Cdd:cd13254   60 RRSFDLTTPYRSFSFTAESEHEKQEWIEAVQ 90
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH