GNAT (Gcn5-related N-acetyltransferase) family protein similar to N-acetyltransferases that catalyze the transfer of an acetyl group from acetyl-CoA to a substrate
N-Acyltransferase superfamily: Various enyzmes that characteristicly catalyze the transfer of ...
2-186
8.01e-125
N-Acyltransferase superfamily: Various enyzmes that characteristicly catalyze the transfer of an acyl group to a substrate; NAT (N-Acyltransferase) is a large superfamily of enzymes that mostly catalyze the transfer of an acyl group to a substrate and are implicated in a variety of functions, from bacterial antibiotic resistance to circadian rhythms in mammals. Members include GCN5-related N-Acetyltransferases (GNAT) such as Aminoglycoside N-acetyltransferases, Histone N-acetyltransferase (HAT) enzymes, and Serotonin N-acetyltransferase which catalyze the transfer of an acetyl group to a substrate. The mechanism is an ordered Bi-Bi ternary complex kinetic mechanism for most GNATs: the reaction begins with Acetyl Coenzyme A (AcCoA) binding, followed by binding of substrate, then direct transfer of the acetyl group from AcCoA to the substrate, followed by product and then CoA release. Other family members include Arginine/ornithine N-succinyltransferase, Myristoyl-CoA: protein N-myristoyltransferase, and Acyl-homoserinelactone synthase which have a similar catalytic mechanism but differ in types of acyl groups transferred. Leucyl/ph enylalanyl-tRNA-protein transferase and FemXAB nonribosomal peptidyltransferases which catalyze similar peptidyltransferase reactions are also included.
The actual alignment was detected with superfamily member PRK00756:
Pssm-ID: 473072 Cd Length: 196 Bit Score: 349.39 E-value: 8.01e-125
N-acyltransferase NodA; Nodulation factors are lipo-chitooligosaccharides made by bacterial ...
2-186
1.78e-124
N-acyltransferase NodA; Nodulation factors are lipo-chitooligosaccharides made by bacterial nitrogen-fixing bacteria as a signal to plant hosts. Nod factors differ slightly from system to system are serve as host range determinants. Because the N-acyl group varies from one NodA to another, the family treated as a subfamily, but all members of this family belong to NodABC systems.
Pssm-ID: 211968 Cd Length: 193 Bit Score: 348.62 E-value: 1.78e-124
Nodulation protein A (NodA); Rhizobia nodulation (nod) genes control the biosynthesis of Nod ...
2-186
1.12e-106
Nodulation protein A (NodA); Rhizobia nodulation (nod) genes control the biosynthesis of Nod factors required for infection and nodulation of their legume hosts. Nodulation protein A (NodA) is a N-acetyltransferase involved in production of Nod factors that stimulate mitosis in various plant protoplasts.
Pssm-ID: 426792 Cd Length: 195 Bit Score: 303.63 E-value: 1.12e-106
N-acyltransferase NodA; Nodulation factors are lipo-chitooligosaccharides made by bacterial ...
2-186
1.78e-124
N-acyltransferase NodA; Nodulation factors are lipo-chitooligosaccharides made by bacterial nitrogen-fixing bacteria as a signal to plant hosts. Nod factors differ slightly from system to system are serve as host range determinants. Because the N-acyl group varies from one NodA to another, the family treated as a subfamily, but all members of this family belong to NodABC systems.
Pssm-ID: 211968 Cd Length: 193 Bit Score: 348.62 E-value: 1.78e-124
Nodulation protein A (NodA); Rhizobia nodulation (nod) genes control the biosynthesis of Nod ...
2-186
1.12e-106
Nodulation protein A (NodA); Rhizobia nodulation (nod) genes control the biosynthesis of Nod factors required for infection and nodulation of their legume hosts. Nodulation protein A (NodA) is a N-acetyltransferase involved in production of Nod factors that stimulate mitosis in various plant protoplasts.
Pssm-ID: 426792 Cd Length: 195 Bit Score: 303.63 E-value: 1.12e-106
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options