NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|767227475|gb|AJT06806|]
View 

Whi3p [Saccharomyces cerevisiae YJM470]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
536-624 3.37e-39

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


:

Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 138.53  E-value: 3.37e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 536 PCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNttsnghsHGPMCFVEFDDVSFATRALAELYGRQLPrstVSSK 615
Cdd:cd12245    1 PCNTLFVANLGPNVSEQELRQLFSRQPGFRRLRMHNKG-------GGPVCFVEFEDVPFATQALNHLQGAILS---SSDR 70

                 ....*....
gi 767227475 616 GGIRLSFSK 624
Cdd:cd12245   71 GGIRIEYAK 79
dRRM_Rrp7p super family cl40585
deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and ...
510-559 4.89e-04

deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains a deviant RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a RRP7 domain. The classic RRM fold has a topology of beta1-alpha1-beta2-beta3-alpha2-beta4 with juxtaposed N- and C-termini. By contrast, the N-terminal region of Rrp7 displays a cyclic permutation of RRM topology: the strand equivalent to RRM beta4 is shuffled to the N-terminus of the strand equivalent to RRM beta1. Moreover, Rrp7 has an extra strand beta1, which, together with other four beta-strands, forms an antiparallel five-stranded beta-sheet.


The actual alignment was detected with superfamily member cd12293:

Pssm-ID: 454777 [Multi-domain]  Cd Length: 105  Bit Score: 40.02  E-value: 4.89e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 767227475 510 SASISQADLSLLARIPPPANPADQNPPCNTLYVGNLPSDATEQELRQLFS 559
Cdd:cd12293   17 SASPEKTTHYLYIRKHASKNPAETLPASRTLFLVNLPVDSTERHLRKLFG 66
 
Name Accession Description Interval E-value
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
536-624 3.37e-39

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 138.53  E-value: 3.37e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 536 PCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNttsnghsHGPMCFVEFDDVSFATRALAELYGRQLPrstVSSK 615
Cdd:cd12245    1 PCNTLFVANLGPNVSEQELRQLFSRQPGFRRLRMHNKG-------GGPVCFVEFEDVPFATQALNHLQGAILS---SSDR 70

                 ....*....
gi 767227475 616 GGIRLSFSK 624
Cdd:cd12245   71 GGIRIEYAK 79
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
540-612 1.74e-15

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 71.50  E-value: 1.74e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475  540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTtsnGHSHGpMCFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDET---GRSKG-FAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM smart00360
RNA recognition motif;
539-607 3.58e-13

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 64.92  E-value: 3.58e-13
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475   539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTsnGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKET--GKSKG-FAFVEFESEEDAEKALEALNGKEL 66
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
538-607 7.88e-09

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 52.79  E-value: 7.88e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSgQEGfRRLSFR---NKNTtsnGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:COG0724    2 MKIYVGNLPYSVTEEDLRELFS-EYG-EVTSVKlitDRET---GRSRG-FGFVEMPDDEEAQAAIEALNGAEL 68
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
509-624 1.37e-06

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 51.36  E-value: 1.37e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475  509 GSASISQADLSLLARIPPPANPADQN--PPCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNGHShgpMCF 586
Cdd:TIGR01649 364 GLTSYKDYSSSRNHRFKKPGSANKNNiqPPSATLHLSNIPLSVSEEDLKELFAENGVHKVKKFKFFPKDNERSK---MGL 440
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 767227475  587 VEFDDVSFATRALAELYGRQLPRSTVSSKGGIRLSFSK 624
Cdd:TIGR01649 441 LEWESVEDAVEALIALNHHQLNEPNGSAPYHLKVSFST 478
dRRM_Rrp7p cd12293
deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and ...
510-559 4.89e-04

deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains a deviant RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a RRP7 domain. The classic RRM fold has a topology of beta1-alpha1-beta2-beta3-alpha2-beta4 with juxtaposed N- and C-termini. By contrast, the N-terminal region of Rrp7 displays a cyclic permutation of RRM topology: the strand equivalent to RRM beta4 is shuffled to the N-terminus of the strand equivalent to RRM beta1. Moreover, Rrp7 has an extra strand beta1, which, together with other four beta-strands, forms an antiparallel five-stranded beta-sheet.


Pssm-ID: 410983 [Multi-domain]  Cd Length: 105  Bit Score: 40.02  E-value: 4.89e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 767227475 510 SASISQADLSLLARIPPPANPADQNPPCNTLYVGNLPSDATEQELRQLFS 559
Cdd:cd12293   17 SASPEKTTHYLYIRKHASKNPAETLPASRTLFLVNLPVDSTERHLRKLFG 66
 
Name Accession Description Interval E-value
RRM_scw1_like cd12245
RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar ...
536-624 3.37e-39

RNA recognition motif (RRM) found in yeast cell wall integrity protein scw1 and similar proteins; This subfamily corresponds to the RRM of the family including yeast cell wall integrity protein scw1, yeast Whi3 protein, yeast Whi4 protein and similar proteins. The strong cell wall protein 1, scw1, is a nonessential cytoplasmic RNA-binding protein that regulates septation and cell-wall structure in fission yeast. It may function as an inhibitor of septum formation, such that its loss of function allows weak SIN signaling to promote septum formation. It's RRM domain shows high homology to two budding yeast proteins, Whi3 and Whi4. Whi3 is a dose-dependent modulator of cell size and has been implicated in cell cycle control in the yeast Saccharomyces cerevisiae. It functions as a negative regulator of ceroid-lipofuscinosis, neuronal 3 (Cln3), a G1 cyclin that promotes transcription of many genes to trigger the G1/S transition in budding yeast. It specifically binds the CLN3 mRNA and localizes it into discrete cytoplasmic loci that may locally restrict Cln3 synthesis to modulate cell cycle progression. Moreover, Whi3 plays a key role in cell fate determination in budding yeast. The RRM domain is essential for Whi3 function. Whi4 is a partially redundant homolog of Whi3, also containing one RRM. Some uncharacterized family members of this subfamily contain two RRMs; their RRM1 shows high sequence homology to the RRM of RNA-binding protein with multiple splicing (RBP-MS)-like proteins.


Pssm-ID: 409691 [Multi-domain]  Cd Length: 79  Bit Score: 138.53  E-value: 3.37e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 536 PCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNttsnghsHGPMCFVEFDDVSFATRALAELYGRQLPrstVSSK 615
Cdd:cd12245    1 PCNTLFVANLGPNVSEQELRQLFSRQPGFRRLRMHNKG-------GGPVCFVEFEDVPFATQALNHLQGAILS---SSDR 70

                 ....*....
gi 767227475 616 GGIRLSFSK 624
Cdd:cd12245   71 GGIRIEYAK 79
RRM_AtNSRA_like cd21618
RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein ...
536-624 4.20e-17

RNA recognition motif (RRM) found in Arabidopsis thaliana nuclear speckle RNA-binding protein A (AtNSRA) and similar protein; AtNSRA is an alternative splicing (AS) regulator that binds to specific mRNAs and modulates auxin effects on the transcriptome. It can be displaced from its targets upon binding to AS competitor long non-coding RNA (ASCO-RNA). Members in this family contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 410197 [Multi-domain]  Cd Length: 87  Bit Score: 76.53  E-value: 4.20e-17
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 536 PCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNGHShgPMCFVEFDDVSFATRALAELYGRQLPRSTVSSK 615
Cdd:cd21618    2 ASSTLYVEGLPLDATEREVAHIFRPFPGFKSVRLVPKEGKRGRKL--VLCFVDFADAQQAAAALETLQGYRLDEDDSDSK 79

                 ....*....
gi 767227475 616 gGIRLSFSK 624
Cdd:cd21618   80 -GLRISFAR 87
RRM_1 pfam00076
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic ...
540-612 1.74e-15

RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain); The RRM motif is probably diagnostic of an RNA binding protein. RRMs are found in a variety of RNA binding proteins, including various hnRNP proteins, proteins implicated in regulation of alternative splicing, and protein components of snRNPs. The motif also appears in a few single stranded DNA binding proteins. The RRM structure consists of four strands and two helices arranged in an alpha/beta sandwich, with a third helix present during RNA binding in some cases The C-terminal beta strand (4th strand) and final helix are hard to align and have been omitted in the SEED alignment The LA proteins have an N terminal rrm which is included in the seed. There is a second region towards the C terminus that has some features characteriztic of a rrm but does not appear to have the important structural core of a rrm. The LA proteins are one of the main autoantigens in Systemic lupus erythematosus (SLE), an autoimmune disease.


Pssm-ID: 425453 [Multi-domain]  Cd Length: 70  Bit Score: 71.50  E-value: 1.74e-15
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475  540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTtsnGHSHGpMCFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:pfam00076   1 LFVGNLPPDTTEEDLKDLFSKFGPIKSIRLVRDET---GRSKG-FAFVEFEDEEDAEKAIEALNGKELGGREL 69
RRM smart00360
RNA recognition motif;
539-607 3.58e-13

RNA recognition motif;


Pssm-ID: 214636 [Multi-domain]  Cd Length: 73  Bit Score: 64.92  E-value: 3.58e-13
                           10        20        30        40        50        60
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475   539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTsnGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:smart00360   1 TLFVGNLPPDTTEEELRELFSKFGKVESVRLVRDKET--GKSKG-FAFVEFESEEDAEKALEALNGKEL 66
RRM_SF cd00590
RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP ...
540-607 2.72e-10

RNA recognition motif (RRM) superfamily; RRM, also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), is a highly abundant domain in eukaryotes found in proteins involved in post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export, and RNA stability. This domain is 90 amino acids in length and consists of a four-stranded beta-sheet packed against two alpha-helices. RRM usually interacts with ssRNA, but is also known to interact with ssDNA as well as proteins. RRM binds a variable number of nucleotides, ranging from two to eight. The active site includes three aromatic side-chains located within the conserved RNP1 and RNP2 motifs of the domain. The RRM domain is found in a variety heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing, and protein components of small nuclear ribonucleoproteins (snRNPs).


Pssm-ID: 409669 [Multi-domain]  Cd Length: 72  Bit Score: 56.52  E-value: 2.72e-10
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSF-RNKNTTSNGHshgpmCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd00590    1 LFVGNLPPDTTEEDLRELFSKFGEVVSVRIvRDRDGKSKGF-----AFVEFESPEDAEKALEALNGTEL 64
RRM COG0724
RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];
538-607 7.88e-09

RNA recognition motif (RRM) domain [Translation, ribosomal structure and biogenesis];


Pssm-ID: 440488 [Multi-domain]  Cd Length: 85  Bit Score: 52.79  E-value: 7.88e-09
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSgQEGfRRLSFR---NKNTtsnGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:COG0724    2 MKIYVGNLPYSVTEEDLRELFS-EYG-EVTSVKlitDRET---GRSRG-FGFVEMPDDEEAQAAIEALNGAEL 68
RRM1_TIA1_like cd12352
RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and ...
540-607 7.09e-08

RNA recognition motif 1 (RRM1) found in granule-associated RNA binding proteins p40-TIA-1 and TIAR; This subfamily corresponds to the RRM1 of nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR), both of which are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. TIA-1 and TIAR share high sequence similarity. They are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both, TIA-1 and TIAR, bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains.


Pssm-ID: 409788 [Multi-domain]  Cd Length: 73  Bit Score: 49.71  E-value: 7.09e-08
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 540 LYVGNLPSDATEQELRQLFsGQEGfrrlSFRNKNTTSNGHSHGPMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12352    1 LYVGNLDRQVTEDLILQLF-SQIG----PCKSCKMITEHGGNDPYCFVEFYEHNHAAAALQAMNGRKI 63
RRM1_SECp43_like cd12344
RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and ...
539-626 1.13e-07

RNA recognition motif 1 (RRM1) found in tRNA selenocysteine-associated protein 1 (SECp43) and similar proteins; This subfamily corresponds to the RRM1 in tRNA selenocysteine-associated protein 1 (SECp43), yeast negative growth regulatory protein NGR1 (RBP1), yeast protein NAM8, and similar proteins. SECp43 is an RNA-binding protein associated specifically with eukaryotic selenocysteine tRNA [tRNA(Sec)]. It may play an adaptor role in the mechanism of selenocysteine insertion. SECp43 is located primarily in the nucleus and contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal polar/acidic region. Yeast proteins, NGR1 and NAM8, show high sequence similarity with SECp43. NGR1 is a putative glucose-repressible protein that binds both RNA and single-stranded DNA (ssDNA). It may function in regulating cell growth in early log phase, possibly through its participation in RNA metabolism. NGR1 contains three RRMs, two of which are followed by a glutamine-rich stretch that may be involved in transcriptional activity. In addition, NGR1 has an asparagine-rich region near the C-terminus which also harbors a methionine-rich region. NAM8 is a putative RNA-binding protein that acts as a suppressor of mitochondrial splicing deficiencies when overexpressed in yeast. It may be a non-essential component of the mitochondrial splicing machinery. NAM8 also contains three RRMs.


Pssm-ID: 409780 [Multi-domain]  Cd Length: 82  Bit Score: 49.61  E-value: 1.13e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGqEGFRRLS---FRNKNTT-SNGHshgpmCFVEFDDVSFATRALAELYGRQLPrstvSS 614
Cdd:cd12344    1 TLWMGDLEPWMDEAYISSCFAK-TGEEVVSvkiIRNKQTGkSAGY-----CFVEFATQEAAEQALEHLNGKPIP----NT 70
                         90
                 ....*....|..
gi 767227475 615 KGGIRLSFSKNP 626
Cdd:cd12344   71 QQRFRLNWASFS 82
RRM2_U1A_like cd12247
RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily ...
536-604 3.88e-07

RNA recognition motif 2 (RRM2) found in the U1A/U2B"/SNF protein family; This subfamily corresponds to the RRM2 of U1A/U2B"/SNF protein family, containing Drosophila sex determination protein SNF and its two mammalian counterparts, U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A) and U2 small nuclear ribonucleoprotein B" (U2 snRNP B" or U2B"), all of which consist of two RNA recognition motifs (RRMs) connected by a variable, flexible linker. SNF is an RNA-binding protein found in the U1 and U2 snRNPs of Drosophila where it is essential in sex determination and possesses a novel dual RNA binding specificity. SNF binds with high affinity to both Drosophila U1 snRNA stem-loop II (SLII) and U2 snRNA stem-loop IV (SLIV). It can also bind to poly(U) RNA tracts flanking the alternatively spliced Sex-lethal (Sxl) exon, as does Drosophila Sex-lethal protein (SXL). U1A is an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. Moreover, U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins. U2B", initially identified to bind to stem-loop IV (SLIV) at the 3' end of U2 snRNA, is a unique protein that comprises of the U2 snRNP. Additional research indicates U2B" binds to U1 snRNA stem-loop II (SLII) as well and shows no preference for SLIV or SLII on the basis of binding affinity. U2B" does not require an auxiliary protein for binding to RNA and its nuclear transport is independent on U2 snRNA binding.


Pssm-ID: 409693 [Multi-domain]  Cd Length: 72  Bit Score: 47.56  E-value: 3.88e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767227475 536 PCNTLYVGNLPSDATEQELRQLFSGQEGF---RRLSFRNknttsnghshgpMCFVEFDDVSFATRALAELYG 604
Cdd:cd12247    1 PNKILFLQNLPEETTKEMLEMLFNQFPGFkevRLVPRRG------------IAFVEFETEEQATVALQALQG 60
RRM2_NsCP33_like cd21608
RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ...
539-607 4.08e-07

RNA recognition motif 2 (RRM2) found in Nicotiana sylvestris chloroplastic 33 kDa ribonucleoprotein (NsCP33) and similar proteins; The family includes NsCP33, Arabidopsis thaliana chloroplastic 31 kDa ribonucleoprotein (CP31A) and mitochondrial glycine-rich RNA-binding protein 2 (AtGR-RBP2). NsCP33 may be involved in splicing and/or processing of chloroplast RNA's. AtCP31A, also called RNA-binding protein 1/2/3 (AtRBP33), or RNA-binding protein CP31A, or RNA-binding protein RNP-T, or RNA-binding protein cp31, is required for specific RNA editing events in chloroplasts and stabilizes specific chloroplast mRNAs, as well as for normal chloroplast development under cold stress conditions by stabilizing transcripts of numerous mRNAs under these conditions. CP31A may modulate telomere replication through RNA binding domains. AtGR-RBP2, also called AtRBG2, or glycine-rich protein 2 (AtGRP2), or mitochondrial RNA-binding protein 1a (At-mRBP1a), plays a role in RNA transcription or processing during stress. It binds RNAs and DNAs sequence with a preference to single-stranded nucleic acids. AtGR-RBP2 displays strong affinity to poly(U) sequence. It exerts cold and freezing tolerance, probably by exhibiting an RNA chaperone activity during the cold and freezing adaptation process. Some members in this family contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the second RRM motif.


Pssm-ID: 410187 [Multi-domain]  Cd Length: 76  Bit Score: 47.93  E-value: 4.08e-07
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFrrLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd21608    1 KLYVGNLSWDTTEDDLRDLFSEFGEV--ESAKVITDRETGRSRG-FGFVTFSTAEAAEAAIDALNGKEL 66
RRM_CSTF2_RNA15_like cd12398
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ...
538-607 6.05e-07

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins; This subfamily corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64. The family also includes yeast ortholog mRNA 3'-end-processing protein RNA15 and similar proteins. RNA15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3'-end processing factor from Saccharomyces cerevisiae. RNA recognition by CFIA is mediated by an N-terminal RRM, which is contained in the RNA15 subunit of the complex. The RRM of RNA15 has a strong preference for GU-rich RNAs, mediated by a binding pocket that is entirely conserved in both yeast and vertebrate RNA15 orthologs.


Pssm-ID: 409832 [Multi-domain]  Cd Length: 77  Bit Score: 47.51  E-value: 6.05e-07
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSgQEGfRRLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRAL-----AELYGRQL 607
Cdd:cd12398    1 RSVFVGNIPYDATEEQLKEIFS-EVG-PVVSFRLVTDRETGKPKG-YGFCEFRDAETALSAVrnlngYELNGRPL 72
hnRNP-L_PTB TIGR01649
hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ...
509-624 1.37e-06

hnRNP-L/PTB/hephaestus splicing factor family; Included in this family of heterogeneous ribonucleoproteins are PTB (polypyrimidine tract binding protein) and hnRNP-L. These proteins contain four RNA recognition motifs (rrm: pfam00067).


Pssm-ID: 273733 [Multi-domain]  Cd Length: 481  Bit Score: 51.36  E-value: 1.37e-06
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475  509 GSASISQADLSLLARIPPPANPADQN--PPCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNGHShgpMCF 586
Cdd:TIGR01649 364 GLTSYKDYSSSRNHRFKKPGSANKNNiqPPSATLHLSNIPLSVSEEDLKELFAENGVHKVKKFKFFPKDNERSK---MGL 440
                          90       100       110
                  ....*....|....*....|....*....|....*...
gi 767227475  587 VEFDDVSFATRALAELYGRQLPRSTVSSKGGIRLSFSK 624
Cdd:TIGR01649 441 LEWESVEDAVEALIALNHHQLNEPNGSAPYHLKVSFST 478
RRM_RBPMS_like cd12420
RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like ...
539-604 1.91e-06

RNA recognition motif (RRM) found in RNA-binding protein with multiple splicing (RBP-MS)-like proteins; This subfamily corresponds to the RRM of RNA-binding proteins with multiple splicing (RBP-MS)-like proteins, including protein products of RBPMS genes (RBP-MS and its paralogue RBP-MS2), the Drosophila couch potato (cpo), and Caenorhabditis elegans Mec-8 genes. RBP-MS may be involved in regulation of mRNA translation and localization during Xenopus laevis development. It has also been shown to physically interact with Smad2, Smad3 and Smad4, and stimulates Smad-mediated transactivation. Cpo may play an important role in regulating normal function of the nervous system, whereas mutations in Mec-8 affect mechanosensory and chemosensory neuronal function. All members contain a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). Some uncharacterized family members contain two RRMs; this subfamily includes their RRM1. Their RRM2 shows high sequence homology to the RRM of yeast proteins scw1, Whi3, and Whi4.


Pssm-ID: 409854 [Multi-domain]  Cd Length: 76  Bit Score: 45.78  E-value: 1.91e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFR--RLSFRNKNTTsnghshgPMCFVEFDDVSFATRALAELYG 604
Cdd:cd12420    2 TLFVSGLPLDVKERELYNLFRPLPGYEasQLKFTGKNTQ-------PVGFVTFESRAAAEAAKDALQG 62
RRM3_TIA1_like cd12354
RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and ...
539-612 2.17e-06

RNA recognition motif 2 (RRM2) found in granule-associated RNA binding proteins (p40-TIA-1 and TIAR), and yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1; This subfamily corresponds to the RRM3 of TIA-1, TIAR, and PUB1. Nucleolysin TIA-1 isoform p40 (p40-TIA-1 or TIA-1) and nucleolysin TIA-1-related protein (TIAR) are granule-associated RNA binding proteins involved in inducing apoptosis in cytotoxic lymphocyte (CTL) target cells. They share high sequence similarity and are expressed in a wide variety of cell types. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis.TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. Both TIA-1 and TIAR bind specifically to poly(A) but not to poly(C) homopolymers. They are composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 and TIAR interact with RNAs containing short stretches of uridylates and their RRM2 can mediate the specific binding to uridylate-rich RNAs. The C-terminal auxiliary domain may be responsible for interacting with other proteins. In addition, TIA-1 and TIAR share a potential serine protease-cleavage site (Phe-Val-Arg) localized at the junction between their RNA binding domains and their C-terminal auxiliary domains. This subfamily also includes a yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1, termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein, which has been identified as both a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP). It may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. PUB1 is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RRMs, and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 409790 [Multi-domain]  Cd Length: 71  Bit Score: 45.74  E-value: 2.17e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 767227475 539 TLYVGNLPSDATEQELRQLFS--GQ-EGFRrlSFRNKNttsnghshgpMCFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:cd12354    2 TVYVGNITKGLTEALLQQTFSpfGQiLEVR--VFPDKG----------YAFIRFDSHEAATHAIVSVNGTIINGQAV 66
RRM_RBM18 cd12355
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; ...
540-607 3.35e-06

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 18 and similar proteins; This subfamily corresponds to the RRM of RBM18, a putative RNA-binding protein containing a well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). The biological role of RBM18 remains unclear.


Pssm-ID: 409791 [Multi-domain]  Cd Length: 80  Bit Score: 45.37  E-value: 3.35e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFR-NKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12355    2 LWIGNLDPRLTEYHLLKLLSKYGKIKKFDFLfHKTGPLKGQPRG-YCFVTFETKEEAEKAIECLNGKLA 69
RRM1_IGF2BP2 cd12626
RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding ...
538-605 4.89e-06

RNA recognition motif 1 (RRM1) found in vertebrate insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2); This subgroup corresponds to the RRM1 of IGF2BP2 (IGF2 mRNA-binding protein 2 or IMP-2), also termed hepatocellular carcinoma autoantigen p62, or VICKZ family member 2, which is a ubiquitously expressed RNA-binding protein involved in the stimulation of insulin action. It is predominantly nuclear. SNPs in IGF2BP2 gene are implicated in susceptibility to type 2 diabetes. IGF2BP2 plays an important role in cellular motility; it regulates the expression of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein, through direct binding to their mRNAs. IGF2BP2 may be involved in the regulation of mRNA stability through the interaction with the AU-rich element-binding factor AUF1. IGF2BP2 binds initially to nascent beta-actin transcripts and facilitates the subsequent binding of the shuttling IGF2BP1. IGF2BP2 contains four hnRNP K-homology (KH) domains, two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a RGG RNA-binding domain.


Pssm-ID: 241070 [Multi-domain]  Cd Length: 77  Bit Score: 44.99  E-value: 4.89e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 538 NTLYVGNLPSDATEQELRQLFsgqeGFRRLSFRNKNTTSNGHShgpmcFVEFDDVSFATRALAELYGR 605
Cdd:cd12626    2 NKLYIGNLSPAVTAEDLRQLF----GDRKLPLTGQVLLKSGYA-----FVDYPDQNWAIRAIETLSGK 60
RRM1_SART3 cd12391
RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells ...
539-600 8.53e-06

RNA recognition motif 1 (RRM1) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM1 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409825 [Multi-domain]  Cd Length: 72  Bit Score: 43.76  E-value: 8.53e-06
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 767227475 539 TLYVGNLPSDATEQELRQLFS--GQEGFRRLSFRNKnttsnGHSHGpMCFVEFDDVSFATRALA 600
Cdd:cd12391    1 TVFVSNLDYSVPEDKIREIFSgcGEITDVRLVKNYK-----GKSKG-YCYVEFKDEESAQKALK 58
RRM1_VICKZ cd12358
RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds ...
540-607 1.12e-05

RNA recognition motif 1 (RRM1) found in the VICKZ family proteins; Thid subfamily corresponds to the RRM1 of IGF2BPs (or IMPs) found in the VICKZ family that have been implicated in the post-transcriptional regulation of several different RNAs and in subcytoplasmic localization of mRNAs during embryogenesis. IGF2BPs are composed of two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and four hnRNP K homology (KH) domains.


Pssm-ID: 240804 [Multi-domain]  Cd Length: 73  Bit Score: 43.51  E-value: 1.12e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 540 LYVGNLPSDATEQELRQLFsgQEgfRRLSFRNKNTTSNGHShgpmcFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12358    1 LYIGNLSSDVNESDLRQLF--EE--HKIPVSSVLVKKGGYA-----FVDCPDQSWADKAIEKLNGKIL 59
RRM1_TIA1 cd12615
RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar ...
539-607 1.18e-05

RNA recognition motif 1 (RRM1) found in nucleolysin TIA-1 isoform p40 (p40-TIA-1) and similar proteins; This subgroup corresponds to the RRM1 of TIA-1, the 40-kDa isoform of T-cell-restricted intracellular antigen-1 (TIA-1) and a cytotoxic granule-associated RNA-binding protein mainly found in the granules of cytotoxic lymphocytes. TIA-1 can be phosphorylated by a serine/threonine kinase that is activated during Fas-mediated apoptosis, and functions as the granule component responsible for inducing apoptosis in cytolytic lymphocyte (CTL) targets. It is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. TIA-1 interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410027 [Multi-domain]  Cd Length: 74  Bit Score: 43.87  E-value: 1.18e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 539 TLYVGNLPSDATEQELRQLFSgQEGfrrlSFRNKNTTSNGHSHGPMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12615    1 TLYVGNLSRDVTEALILQLFS-QIG----PCKNCKMIMDTAGNDPYCFVEFHEHRHAAAALAAMNGRKI 64
RRM_Nop6 cd12400
RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and ...
538-606 1.62e-05

RNA recognition motif (RRM) found in Saccharomyces cerevisiae nucleolar protein 6 (Nop6) and similar proteins; This subfamily corresponds to the RRM of Nop6, also known as Ydl213c, a component of 90S pre-ribosomal particles in yeast S. cerevisiae. It is enriched in the nucleolus and is required for 40S ribosomal subunit biogenesis. Nop6 is a non-essential putative RNA-binding protein with two N-terminal putative nuclear localisation sequences (NLS-1 and NLS-2) and an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It binds to the pre-rRNA early during transcription and plays an essential role in pre-rRNA processing.


Pssm-ID: 409834 [Multi-domain]  Cd Length: 74  Bit Score: 43.36  E-value: 1.62e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSGQegFRRLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRALA----ELYGRQ 606
Cdd:cd12400    1 YILFVGNLPYDTTAEDLKEHFKKA--GEPPSVRLLTDKKTGKSKG-CAFVEFDNQKALQKALKlhhtSLGGRK 70
RRM6_RBM19_RRM5_MRD1 cd12320
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA ...
538-607 1.64e-05

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19 or RBD-1) and RNA recognition motif 5 (RRM5) found in multiple RNA-binding domain-containing protein 1 (MRD1); This subfamily corresponds to the RRM6 of RBM19 and RRM5 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). MRD1 is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RRMs, which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409759 [Multi-domain]  Cd Length: 76  Bit Score: 43.38  E-value: 1.64e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTsnghSHGPMCFVEF---DDVSFATRALA--ELYGRQL 607
Cdd:cd12320    1 TKLIVKNVPFEATRKEIRELFSPFGQLKSVRLPKKFDG----SHRGFAFVEFvtkQEAQNAMEALKstHLYGRHL 71
RRM1_SRSF9 cd12598
RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 9 ...
540-605 2.40e-05

RNA recognition motif 1 (RRM1) found in vertebrate serine/arginine-rich splicing factor 9 (SRSF9); This subgroup corresponds to the RRM1 of SRSF9, also termed pre-mRNA-splicing factor SRp30C. SRSF9 is an essential splicing regulatory serine/arginine (SR) protein that has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. SRSF9 can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. SRSF9 contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by an unusually short C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 241042 [Multi-domain]  Cd Length: 72  Bit Score: 42.86  E-value: 2.40e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKnttsngHSHGPMCFVEFDDVSFATRAlaeLYGR 605
Cdd:cd12598    2 IYVGNLPSDVREKDLEDLFYKYGRIRDIELKNR------RGLVPFAFVRFEDPRDAEDA---VFGR 58
RRM1_HRB1_GBP2 cd21605
RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, ...
538-602 2.80e-05

RNA recognition motif 1 (RRM1) found in Saccharomyces cerevisiae protein HRB1, G-strand-binding protein 2 (GBP2) and similar proteins; The family includes Saccharomyces cerevisiae protein HRB1 (also called protein TOM34) and GBP2, both of which are SR-like mRNA-binding proteins which shuttle from the nucleus to the cytoplasm when bound to the mature mRNA molecules. They act as quality control factors for spliced mRNAs. GBP2, also called RAP1 localization factor 6, is a single-strand telomeric DNA-binding protein that binds single-stranded telomeric sequences of the type (TG[1-3])n in vitro. It also binds to RNA. GBP2 influences the localization of RAP1 in the nuclei and plays a role in modulating telomere length. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410184 [Multi-domain]  Cd Length: 77  Bit Score: 42.67  E-value: 2.80e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSgqeGFRRLsFRNKNTTSNGHSHGpMCFVEFDDVSFATRALAEL 602
Cdd:cd21605    2 NSIFVGNLPFDCTWEDLKDHFS---QVGEV-IRADIVTSRGRHRG-MGTVEFTNKEDVDRAISKF 61
RRM_cpo cd12684
RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein ...
539-624 4.28e-05

RNA recognition motif (RRM) found in Drosophila couch potato (cpo) coding RNA-binding protein and similar proteins; This subfamily corresponds to the RRM of Cpo, an RNA-binding protein encoded by Drosophila couch potato (cpo) gene. Cpo contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It may control the processing of RNA molecules required for the proper functioning of the peripheral nervous system (PNS).


Pssm-ID: 410085 [Multi-domain]  Cd Length: 83  Bit Score: 42.20  E-value: 4.28e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSFrnKNTTSNGHSHGPMCFVEFDDVSFATRALAELYG----RQLPRStvss 614
Cdd:cd12684    3 TLFVSGLPMDAKPRELYLLFRAYKGYEGSLL--KVTSKNGKTTSPVGFVTFLSRQAAEAAKQDLQGvrfdPDLPQT---- 76
                         90
                 ....*....|
gi 767227475 615 kggIRLSFSK 624
Cdd:cd12684   77 ---LRLEFAK 83
RRM2_Hu cd12652
RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to ...
540-612 6.43e-05

RNA recognition motif 2 (RRM2) found in the Hu proteins family; This subfamily corresponds to the RRM2 of Hu proteins family which represents a group of RNA-binding proteins involved in diverse biological processes. Since the Hu proteins share high homology with the Drosophila embryonic lethal abnormal vision (ELAV) protein, the Hu family is sometimes referred to as the ELAV family. Drosophila ELAV is exclusively expressed in neurons and is required for the correct differentiation and survival of neurons in flies. The neuronal members of the Hu family include Hu-antigen B (HuB or ELAV-2 or Hel-N1), Hu-antigen C (HuC or ELAV-3 or PLE21), and Hu-antigen D (HuD or ELAV-4), which play important roles in neuronal differentiation, plasticity and memory. HuB is also expressed in gonads. Hu-antigen R (HuR or ELAV-1 or HuA) is the ubiquitously expressed Hu family member. It has a variety of biological functions mostly related to the regulation of cellular response to DNA damage and other types of stress. Moreover, HuR has an anti-apoptotic function during early cell stress response. It binds to mRNAs and enhances the expression of several anti-apoptotic proteins, such as p21waf1, p53, and prothymosin alpha. HuR also has pro-apoptotic function by promoting apoptosis when cell death is unavoidable. Furthermore, HuR may be important in muscle differentiation, adipogenesis, suppression of inflammatory response and modulation of gene expression in response to chronic ethanol exposure and amino acid starvation. Hu proteins perform their cytoplasmic and nuclear molecular functions by coordinately regulating functionally related mRNAs. In the cytoplasm, Hu proteins recognize and bind to AU-rich RNA elements (AREs) in the 3' untranslated regions (UTRs) of certain target mRNAs, such as GAP-43, vascular epithelial growth factor (VEGF), the glucose transporter GLUT1, eotaxin and c-fos, and stabilize those ARE-containing mRNAs. They also bind and regulate the translation of some target mRNAs, such as neurofilament M, GLUT1, and p27. In the nucleus, Hu proteins function as regulators of polyadenylation and alternative splicing. Each Hu protein contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). RRM1 and RRM2 may cooperate in binding to an ARE. RRM3 may help to maintain the stability of the RNA-protein complex, and might also bind to poly(A) tails or be involved in protein-protein interactions.


Pssm-ID: 410055 [Multi-domain]  Cd Length: 79  Bit Score: 41.54  E-value: 6.43e-05
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 540 LYVGNLPSDATEQELRQLFSgQEGfRRLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:cd12652    3 LYVSGLPKTMTQKELEQLFS-QFG-RIITSRILCDNVTGLSRG-VGFIRFDKRVEAERAIKALNGTIPPGATE 72
RRM4_PTBP1_like cd12425
RNA recognition motif 4 (RRM4) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) ...
539-624 6.96e-05

RNA recognition motif 4 (RRM4) found in polypyrimidine tract-binding protein 1 (PTB or hnRNP I) and similar proteins; This subfamily corresponds to the RRM4 of polypyrimidine tract-binding protein 1 (PTB or hnRNP I), polypyrimidine tract-binding protein 2 (PTBP2 or nPTB), regulator of differentiation 1 (Rod1), and similar proteins found in Metazoa. PTB is an important negative regulator of alternative splicing in mammalian cells and also functions at several other aspects of mRNA metabolism, including mRNA localization, stabilization, polyadenylation, and translation. PTBP2 is highly homologous to PTB and is perhaps specific to the vertebrates. Unlike PTB, PTBP2 is enriched in the brain and in some neural cell lines. It binds more stably to the downstream control sequence (DCS) RNA than PTB does but is a weaker repressor of splicing in vitro. PTBP2 also greatly enhances the binding of two other proteins, heterogeneous nuclear ribonucleoprotein (hnRNP) H and KH-type splicing-regulatory protein (KSRP), to the DCS RNA. The binding properties of PTBP2 and its reduced inhibitory activity on splicing imply roles in controlling the assembly of other splicing-regulatory proteins. PTBP2 also contains four RRMs. ROD1 coding protein Rod1 is a mammalian PTB homolog of a regulator of differentiation in the fission yeast Schizosaccharomyces pombe, where the nrd1 gene encodes an RNA binding protein negatively regulates the onset of differentiation. ROD1 is predominantly expressed in hematopoietic cells or organs. It may play a role controlling differentiation in mammals. All members in this family contain four RNA recognition motifs (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409859 [Multi-domain]  Cd Length: 76  Bit Score: 41.49  E-value: 6.96e-05
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFSgQEGFRRLSFRNKnttsngHSHGPMCFVEFDDVSFATRALAELYGRQLPRSTvsskgGI 618
Cdd:cd12425    1 TLHLSNIPPSVTEEDLKDLFT-STGGTVKAFKFF------QKDRKMALIQMGSVEEAIEALIALHNYQLSENS-----HL 68

                 ....*.
gi 767227475 619 RLSFSK 624
Cdd:cd12425   69 RVSFSK 74
RRM1_SRSF1_like cd12338
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and ...
539-605 1.01e-04

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 1 (SRSF1) and similar proteins; This subgroup corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 1 (SRSF1 or ASF-1), serine/arginine-rich splicing factor 9 (SRSF9 or SRp30C), and plant pre-mRNA-splicing factor SF2 (SR1). SRSF1 is a shuttling SR protein involved in constitutive and alternative splicing, nonsense-mediated mRNA decay (NMD), mRNA export and translation. It also functions as a splicing-factor oncoprotein that regulates apoptosis and proliferation to promote mammary epithelial cell transformation. SRSF9 has been implicated in the activity of many elements that control splice site selection, the alternative splicing of the glucocorticoid receptor beta in neutrophils and in the gonadotropin-releasing hormone pre-mRNA. It can also interact with other proteins implicated in alternative splicing, including YB-1, rSLM-1, rSLM-2, E4-ORF4, Nop30, and p32. Both, SRSF1 and SRSF9, contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a C-terminal RS domains rich in serine-arginine dipeptides. In contrast, SF2 contains two N-terminal RRMs and a C-terminal PSK domain rich in proline, serine and lysine residues.


Pssm-ID: 409775 [Multi-domain]  Cd Length: 72  Bit Score: 40.81  E-value: 1.01e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSFRnknttsNGHSHGPMCFVEFDDVSFATRAlaeLYGR 605
Cdd:cd12338    1 RIYVGNLPGDIRERDIEDLFYKYGPILAIDLK------NRRRGPPFAFVEFEDPRDAEDA---IRGR 58
RRM2_RBM23_RBM39 cd12284
RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and ...
540-615 1.03e-04

RNA recognition motif 2 (RRM2) found in vertebrate RNA-binding protein RBM23, RBM39 and similar proteins; This subfamily corresponds to the RRM2 of RBM39 (also termed HCC1), a nuclear autoantigen that contains an N-terminal arginine/serine rich (RS) motif and three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). An octapeptide sequence called the RS-ERK motif is repeated six times in the RS region of RBM39. Although the cellular function of RBM23 remains unclear, it shows high sequence homology to RBM39 and contains two RRMs. It may possibly function as a pre-mRNA splicing factor.


Pssm-ID: 409726 [Multi-domain]  Cd Length: 78  Bit Score: 41.07  E-value: 1.03e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 540 LYVGNLPSDATEQELRQLFsgqEGFRRLSF----RNKNTtsnGHSHGpMCFVEFDDVSFATRALA-----ELYGRQLPRS 610
Cdd:cd12284    1 LYVGSLHFNITEDMLRGIF---EPFGKIEFvqlqKDPET---GRSKG-YGFIQFRDAEDAKKALEqlngfELAGRPMKVG 73

                 ....*
gi 767227475 611 TVSSK 615
Cdd:cd12284   74 HVTER 78
RRM1_TIAR cd12616
RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup ...
539-607 1.30e-04

RNA recognition motif 1 (RRM1) found in nucleolysin TIAR and similar proteins; This subgroup corresponds to the RRM1 of nucleolysin TIAR, also termed TIA-1-related protein, and a cytotoxic granule-associated RNA-binding protein that shows high sequence similarity with 40-kDa isoform of T-cell-restricted intracellular antigen-1 (p40-TIA-1). TIAR is mainly localized in the nucleus of hematopoietic and nonhematopoietic cells. It is translocated from the nucleus to the cytoplasm in response to exogenous triggers of apoptosis. TIAR possesses nucleolytic activity against cytolytic lymphocyte (CTL) target cells. It can trigger DNA fragmentation in permeabilized thymocytes, and thus may function as an effector responsible for inducing apoptosis. TIAR is composed of three N-terminal highly homologous RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a glutamine-rich C-terminal auxiliary domain containing a lysosome-targeting motif. It interacts with RNAs containing short stretches of uridylates and its RRM2 can mediate the specific binding to uridylate-rich RNAs.


Pssm-ID: 410028 [Multi-domain]  Cd Length: 81  Bit Score: 40.84  E-value: 1.30e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNghshgPMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12616    1 TLYVGNLSRDVTEVLILQLFSQIGPCKSCKMITEHTSND-----PYCFVEFYEHRDAAAALAAMNGRKI 64
RRM2_RBM34 cd12395
RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; ...
539-607 1.60e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 34 (RBM34) and similar proteins; This subfamily corresponds to the RRM2 of RBM34, a putative RNA-binding protein containing two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). Although the function of RBM34 remains unclear currently, its RRM domains may participate in mRNA processing. RBM34 may act as an mRNA processing-related protein.


Pssm-ID: 409829 [Multi-domain]  Cd Length: 73  Bit Score: 40.17  E-value: 1.60e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQ---EGFRRLsfRNKNTTsnghshgpMC----FVEFDDVSFATRALA----ELYGRQL 607
Cdd:cd12395    1 SVFVGNLPFDIEEEELRKHFEDCgdvEAVRIV--RDRETG--------IGkgfgYVLFKDKDSVDLALKlngsKLRGRKL 70
RRM_CSTF2_CSTF2T cd12671
RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage ...
539-607 1.66e-04

RNA recognition motif (RRM) found in cleavage stimulation factor subunit 2 (CSTF2), cleavage stimulation factor subunit 2 tau variant (CSTF2T) and similar proteins; This subgroup corresponds to the RRM domain of CSTF2, its tau variant and eukaryotic homologs. CSTF2, also termed cleavage stimulation factor 64 kDa subunit (CstF64), is the vertebrate conterpart of yeast mRNA 3'-end-processing protein RNA15. It is expressed in all somatic tissues and is one of three cleavage stimulatory factor (CstF) subunits required for polyadenylation. CstF64 contains an N-terminal RNA recognition motif (RRM), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), a CstF77-binding domain, a repeated MEARA helical region and a conserved C-terminal domain reported to bind the transcription factor PC-4. During polyadenylation, CstF interacts with the pre-mRNA through the RRM of CstF64 at U- or GU-rich sequences within 10 to 30 nucleotides downstream of the cleavage site. CSTF2T, also termed tauCstF64, is a paralog of the X-linked cleavage stimulation factor CstF64 protein that supports polyadenylation in most somatic cells. It is expressed during meiosis and subsequent haploid differentiation in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells, and to a lesser extent in brain. The loss of CSTF2T will cause male infertility, as it is necessary for spermatogenesis and fertilization. Moreover, CSTF2T is required for expression of genes involved in morphological differentiation of spermatids, as well as for genes having products that function during interaction of motile spermatozoa with eggs. It promotes germ cell-specific patterns of polyadenylation by using its RRM to bind to different sequence elements downstream of polyadenylation sites than does CstF64.


Pssm-ID: 410072 [Multi-domain]  Cd Length: 85  Bit Score: 40.57  E-value: 1.66e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 539 TLYVGNLPSDATEQELRQLFSgqEGFRRLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12671    8 SVFVGNIPYEATEEQLKDIFS--EVGPVVSFRLVYDRETGKPKG-YGFCEYQDQETALSAMRNLNGYEL 73
RRM1_U2AF65 cd12230
RNA recognition motif 1 (RRM1) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
540-600 1.68e-04

RNA recognition motif 1 (RRM1) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; The subfamily corresponds to the RRM1 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409677 [Multi-domain]  Cd Length: 82  Bit Score: 40.61  E-value: 1.68e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 540 LYVGNLPSDATEQELrqlfsgQEGFRRLSFRNKNTTSNGH--------SHGPMCFVEFDDVSFATRALA 600
Cdd:cd12230    4 LYVGNIPPGITEEEL------MDFFNQAMRAAGLTQAPGNpvlavqinPDKNFAFVEFRSVEETTAALA 66
RRM1_SRSF4_like cd12337
RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and ...
540-607 1.71e-04

RNA recognition motif 1 (RRM1) found in serine/arginine-rich splicing factor 4 (SRSF4) and similar proteins; This subfamily corresponds to the RRM1 in three serine/arginine (SR) proteins: serine/arginine-rich splicing factor 4 (SRSF4 or SRp75 or SFRS4), serine/arginine-rich splicing factor 5 (SRSF5 or SRp40 or SFRS5 or HRS), serine/arginine-rich splicing factor 6 (SRSF6 or SRp55). SRSF4 plays an important role in both, constitutive and alternative, splicing of many pre-mRNAs. It can shuttle between the nucleus and cytoplasm. SRSF5 regulates both alternative splicing and basal splicing. It is the only SR protein efficiently selected from nuclear extracts (NE) by the splicing enhancer (ESE) and essential for enhancer activation. SRSF6 preferentially interacts with a number of purine-rich splicing enhancers (ESEs) to activate splicing of the ESE-containing exon. It is the only protein from HeLa nuclear extract or purified SR proteins that specifically binds B element RNA after UV irradiation. SRSF6 may also recognize different types of RNA sites. Members in this family contain two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), followed by a C-terminal RS domains rich in serine-arginine dipeptides.


Pssm-ID: 409774 [Multi-domain]  Cd Length: 70  Bit Score: 40.38  E-value: 1.71e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNknttsnghSHGpmcFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12337    2 VYIGRLPYRARERDVERFFRGYGRIRDINLKN--------GFG---FVEFEDPRDADDAVYELNGKEL 58
RRM2_SART3 cd12392
RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells ...
538-613 1.81e-04

RNA recognition motif 2 (RRM2) found in squamous cell carcinoma antigen recognized by T-cells 3 (SART3) and similar proteins; This subfamily corresponds to the RRM2 of SART3, also termed Tat-interacting protein of 110 kDa (Tip110), is an RNA-binding protein expressed in the nucleus of the majority of proliferating cells, including normal cells and malignant cells, but not in normal tissues except for the testes and fetal liver. It is involved in the regulation of mRNA splicing probably via its complex formation with RNA-binding protein with a serine-rich domain (RNPS1), a pre-mRNA-splicing factor. SART3 has also been identified as a nuclear Tat-interacting protein that regulates Tat transactivation activity through direct interaction and functions as an important cellular factor for HIV-1 gene expression and viral replication. In addition, SART3 is required for U6 snRNP targeting to Cajal bodies. It binds specifically and directly to the U6 snRNA, interacts transiently with the U6 and U4/U6 snRNPs, and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. SART3 contains an N-terminal half-a-tetratricopeptide repeat (HAT)-rich domain, a nuclearlocalization signal (NLS) domain, and two C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409826 [Multi-domain]  Cd Length: 81  Bit Score: 40.39  E-value: 1.81e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 538 NTLYVGNLPSDATEQELRQLFsGQEG----FRRLSFRnknttsNGHSHGpMCFVEFDDVSFATRALAELYGRQLPRSTVS 613
Cdd:cd12392    3 NKLFVKGLPFSCTKEELEELF-KQHGtvkdVRLVTYR------NGKPKG-LAYVEYENEADASQAVLKTDGTEIKDHTIS 74
RRM_II_PABPs cd12306
RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to ...
541-607 2.18e-04

RNA recognition motif in type II polyadenylate-binding proteins; This subfamily corresponds to the RRM of type II polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 2 (PABP-2 or PABPN1), embryonic polyadenylate-binding protein 2 (ePABP-2 or PABPN1L) and similar proteins. PABPs are highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in the regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. ePABP-2 is predominantly located in the cytoplasm and PABP-2 is located in the nucleus. In contrast to the type I PABPs containing four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), the type II PABPs contains a single highly-conserved RRM. This subfamily also includes Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encoding cytoplasmic mRNA-binding protein Rbp29 that binds preferentially to poly(A). Although not essential for cell viability, Rbp29 plays a role in modulating the expression of cytoplasmic mRNA. Like other type II PABPs, Rbp29 contains one RRM only.


Pssm-ID: 409747 [Multi-domain]  Cd Length: 73  Bit Score: 39.98  E-value: 2.18e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767227475 541 YVGNLPSDATEQELRQLFSGQEGFRRLSFR-NKNTtsnGHSHGpMCFVEFDDVSFATRALA----ELYGRQL 607
Cdd:cd12306    3 YVGNVDYGTTPEELQAHFKSCGTINRVTILcDKFT---GQPKG-FAYIEFVDKSSVENALLlnesEFRGRQI 70
SF-CC1 TIGR01622
splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors ...
540-607 2.38e-04

splicing factor, CC1-like family; This model represents a subfamily of RNA splicing factors including the Pad-1 protein (N. crassa), CAPER (M. musculus) and CC1.3 (H.sapiens). These proteins are characterized by an N-terminal arginine-rich, low complexity domain followed by three (or in the case of 4 H. sapiens paralogs, two) RNA recognition domains (rrm: pfam00706). These splicing factors are closely related to the U2AF splicing factor family (TIGR01642). A homologous gene from Plasmodium falciparum was identified in the course of the analysis of that genome at TIGR and was included in the seed.


Pssm-ID: 273721 [Multi-domain]  Cd Length: 494  Bit Score: 44.14  E-value: 2.38e-04
                          10        20        30        40        50        60        70
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767227475  540 LYVGNLPSDATEQELRQLFsgqEGFRRLSF----RNKNTtsnGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:TIGR01622 217 LYVGNLHFNITEQDLRQIF---EPFGEIEFvqlqKDPET---GRSKG-YGFIQFRDAEQAKEALEKMNGFEL 281
RRM5_RBM19_like cd12318
RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar ...
538-607 2.40e-04

RNA recognition motif 5 (RRM5) found in RNA-binding protein 19 (RBM19 or RBD-1) and similar proteins; This subfamily corresponds to the RRM5 of RBM19 and RRM4 of MRD1. RBM19, also termed RNA-binding domain-1 (RBD-1), is a nucleolar protein conserved in eukaryotes involved in ribosome biogenesis by processing rRNA and is essential for preimplantation development. It has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409757 [Multi-domain]  Cd Length: 80  Bit Score: 39.90  E-value: 2.40e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSGQEGFRRLSF-RNKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12318    1 TTLFVKNLNFKTTEEALKKHFEKCGPIRSVTIaKKKDPKGPLLSMG-YGFVEFKSPEAAQKALKQLQGTVL 70
RRM_eIF3G_like cd12408
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G ...
539-605 2.71e-04

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 3 subunit G (eIF-3G) and similar proteins; This subfamily corresponds to the RRM of eIF-3G and similar proteins. eIF-3G, also termed eIF-3 subunit 4, or eIF-3-delta, or eIF3-p42, or eIF3-p44, is the RNA-binding subunit of eIF3, a large multisubunit complex that plays a central role in the initiation of translation by binding to the 40 S ribosomal subunit and promoting the binding of methionyl-tRNAi and mRNA. eIF-3G binds 18 S rRNA and beta-globin mRNA, and therefore appears to be a nonspecific RNA-binding protein. eIF-3G is one of the cytosolic targets and interacts with mature apoptosis-inducing factor (AIF). eIF-3G contains one RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). This family also includes yeast eIF3-p33, a homolog of vertebrate eIF-3G, plays an important role in the initiation phase of protein synthesis in yeast. It binds both, mRNA and rRNA, fragments due to an RRM near its C-terminus.


Pssm-ID: 409842 [Multi-domain]  Cd Length: 76  Bit Score: 39.80  E-value: 2.71e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSF-RNKNTtsnGHSHGpMCFVEFDDVSFATRALAELYGR 605
Cdd:cd12408    1 TIRVTNLSEDATEEDLRELFRPFGPISRVYLaKDKET---GQSKG-FAFVTFETREDAERAIEKLNGF 64
RRM1_RRM2_RBM5_like cd12313
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar ...
536-604 3.11e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RNA-binding protein 5 (RBM5) and similar proteins; This subfamily includes the RRM1 and RRM2 of RNA-binding protein 5 (RBM5 or LUCA15 or H37) and RNA-binding protein 10 (RBM10 or S1-1), and the RRM2 of RNA-binding protein 6 (RBM6 or NY-LU-12 or g16 or DEF-3). These RBMs share high sequence homology and may play an important role in regulating apoptosis. RBM5 is a known modulator of apoptosis. It may also act as a tumor suppressor or an RNA splicing factor. RBM6 has been predicted to be a nuclear factor based on its nuclear localization signal. Both, RBM6 and RBM5, specifically bind poly(G) RNA. RBM10 is a paralog of RBM5. It may play an important role in mRNA generation, processing and degradation in several cell types. The rat homolog of human RBM10 is protein S1-1, a hypothetical RNA binding protein with poly(G) and poly(U) binding capabilities. All family members contain two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two C2H2-type zinc fingers, and a G-patch/D111 domain.


Pssm-ID: 409752 [Multi-domain]  Cd Length: 85  Bit Score: 39.94  E-value: 3.11e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 536 PCNTLYVGNLPSDATEQELRQLFSGQEGFR----RLSfRNKNTtsnGHSHGpMCFVEFDDVSFATRALAELYG 604
Cdd:cd12313    1 PTNVLILRGLDVLTTEEDILSALQAHADLPikdvRLI-RDKLT---GTSRG-FAFVEFSSLEDATQVMDALQN 68
RRM1_Mug28 cd21620
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated ...
539-604 3.59e-04

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe meiotically up-regulated gene 28 protein (Mug28) and similar proteins; Mug28 is a meiosis-specific protein that regulates spore wall formation. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410199 [Multi-domain]  Cd Length: 84  Bit Score: 39.80  E-value: 3.59e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFsgQEGFRRLSF----RNKNTTSNGHSHGPMCFVEFDDVSFATRALAELYG 604
Cdd:cd21620    3 SLYVGNLPQTCQSEDLIILF--EPYGNVCGAhiasRKKVKVSWVKPSKLFAFVEFETKEAATTAIVLLNG 70
RRM6_RBM19 cd12571
RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; ...
540-607 3.63e-04

RNA recognition motif 6 (RRM6) found in RNA-binding protein 19 (RBM19) and similar proteins; This subgroup corresponds to the RRM6 of RBM19, also termed RNA-binding domain-1 (RBD-1), which is a nucleolar protein conserved in eukaryotes. It is involved in ribosome biogenesis by processing rRNA. In addition, it is essential for preimplantation development. RBM19 has a unique domain organization containing 6 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409985 [Multi-domain]  Cd Length: 79  Bit Score: 39.72  E-value: 3.63e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 767227475 540 LYVGNLPSDATEQELRQLFS--GQEGFRRLSfrnKNTTSNGhSHGPMCFVEF---DDVSFATRALAE---LYGRQL 607
Cdd:cd12571    3 ILVRNIPFQATVKEVRELFStfGELKTVRLP---KKMGGTG-QHRGFGFVDFitkQDAKRAFDALCHsthLYGRRL 74
RRM1_p54nrb_like cd12332
RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds ...
540-559 3.90e-04

RNA recognition motif 1 (RRM1) found in the p54nrb/PSF/PSP1 family; This subfamily corresponds to the RRM1 of the p54nrb/PSF/PSP1 family, including 54 kDa nuclear RNA- and DNA-binding protein (p54nrb or NonO or NMT55), polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF or POMp100), paraspeckle protein 1 (PSP1 or PSPC1), which are ubiquitously expressed and are conserved in vertebrates. p54nrb is a multi-functional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. PSF is also a multi-functional protein that binds RNA, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and many factors, and mediates diverse activities in the cell. PSP1 is a novel nucleolar factor that accumulates within a new nucleoplasmic compartment, termed paraspeckles, and diffusely distributes in the nucleoplasm. The cellular function of PSP1 remains unknown currently. This subfamily also includes some p54nrb/PSF/PSP1 homologs from invertebrate species, such as the Drosophila melanogaster gene no-ontransient A (nonA) encoding puff-specific protein Bj6 (also termed NONA) and Chironomus tentans hrp65 gene encoding protein Hrp65. D. melanogaster NONA is involved in eye development and behavior, and may play a role in circadian rhythm maintenance, similar to vertebrate p54nrb. C. tentans Hrp65 is a component of nuclear fibers associated with ribonucleoprotein particles in transit from the gene to the nuclear pore. All family members contain a DBHS domain (for Drosophila behavior, human splicing), which comprises two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a charged protein-protein interaction module. PSF has an additional large N-terminal domain that differentiates it from other family members.


Pssm-ID: 409769 [Multi-domain]  Cd Length: 71  Bit Score: 39.20  E-value: 3.90e-04
                         10        20
                 ....*....|....*....|
gi 767227475 540 LYVGNLPSDATEQELRQLFS 559
Cdd:cd12332    4 LFVGNLPNDITEEEFKELFQ 23
RRM1_CoAA cd12608
RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator ...
540-608 3.93e-04

RNA recognition motif 1 (RRM1) found in vertebrate RRM-containing coactivator activator/modulator (CoAA); This subgroup corresponds to the RRM1 of CoAA, also termed RNA-binding protein 14 (RBM14), or paraspeckle protein 2 (PSP2), or synaptotagmin-interacting protein (SYT-interacting protein), a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. It stimulates transcription through its interactions with coactivators, such as TRBP and CREB-binding protein CBP/p300, via the TRBP-interacting domain and interaction with an RNA-containing complex, such as DNA-dependent protein kinase-poly(ADP-ribose) polymerase complexes, via the RRMs.


Pssm-ID: 410020 [Multi-domain]  Cd Length: 69  Bit Score: 39.02  E-value: 3.93e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKnttsnghshgpMCFVEFDDVSFATRALAELYGRQLP 608
Cdd:cd12608    3 IFVGNVDEDTSQEELSALFEPYGAVLSCAVMKQ-----------FAFVHMRGEAAADRAIRELNGRELH 60
dRRM_Rrp7p cd12293
deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and ...
510-559 4.89e-04

deviant RNA recognition motif (dRRM) in yeast ribosomal RNA-processing protein 7 (Rrp7p) and similar proteins; Rrp7p is encoded by YCL031C gene from Saccharomyces cerevisiae. It is an essential yeast protein involved in pre-rRNA processing and ribosome assembly, and is speculated to be required for correct assembly of rpS27 into the pre-ribosomal particle. Rrp7p contains a deviant RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a RRP7 domain. The classic RRM fold has a topology of beta1-alpha1-beta2-beta3-alpha2-beta4 with juxtaposed N- and C-termini. By contrast, the N-terminal region of Rrp7 displays a cyclic permutation of RRM topology: the strand equivalent to RRM beta4 is shuffled to the N-terminus of the strand equivalent to RRM beta1. Moreover, Rrp7 has an extra strand beta1, which, together with other four beta-strands, forms an antiparallel five-stranded beta-sheet.


Pssm-ID: 410983 [Multi-domain]  Cd Length: 105  Bit Score: 40.02  E-value: 4.89e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|
gi 767227475 510 SASISQADLSLLARIPPPANPADQNPPCNTLYVGNLPSDATEQELRQLFS 559
Cdd:cd12293   17 SASPEKTTHYLYIRKHASKNPAETLPASRTLFLVNLPVDSTERHLRKLFG 66
RRM_NIFK_like cd12307
RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) ...
539-591 5.40e-04

RNA recognition motif in nucleolar protein interacting with the FHA domain of pKI-67 (NIFK) and similar proteins; This subgroup corresponds to the RRM of NIFK and Nop15p. NIFK, also termed MKI67 FHA domain-interacting nucleolar phosphoprotein, or nucleolar phosphoprotein Nopp34, is a putative RNA-binding protein interacting with the forkhead associated (FHA) domain of pKi-67 antigen in a mitosis-specific and phosphorylation-dependent manner. It is nucleolar in interphase but associates with condensed mitotic chromosomes. This family also includes Saccharomyces cerevisiae YNL110C gene encoding ribosome biogenesis protein 15 (Nop15p), also termed nucleolar protein 15. Both, NIFK and Nop15p, contain an RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain).


Pssm-ID: 409748 [Multi-domain]  Cd Length: 74  Bit Score: 39.09  E-value: 5.40e-04
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 539 TLYVGNLPSDATEQELRQLFS--GQEGFRRLSfRNKNTtsnGHSHGpMCFVEFDD 591
Cdd:cd12307    1 VVYIGHLPHGFYEPELRKYFSqfGTVTRLRLS-RSKKT---GKSKG-YAFVEFED 50
RRM_G3BP cd12229
RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, ...
540-600 5.54e-04

RNA recognition motif (RRM) found in ras GTPase-activating protein-binding protein G3BP1, G3BP2 and similar proteins; This subfamily corresponds to the RRM domain in the G3BP family of RNA-binding and SH3 domain-binding proteins. G3BP acts at the level of RNA metabolism in response to cell signaling, possibly as RNA transcript stabilizing factors or an RNase. Members include G3BP1, G3BP2 and similar proteins. These proteins associate directly with the SH3 domain of GTPase-activating protein (GAP), which functions as an inhibitor of Ras. They all contain an N-terminal nuclear transfer factor 2 (NTF2)-like domain, an acidic domain, a domain containing PXXP motif(s), an RNA recognition motif (RRM), and an Arg-Gly-rich region (RGG-rich region, or arginine methylation motif).


Pssm-ID: 409676 [Multi-domain]  Cd Length: 81  Bit Score: 38.93  E-value: 5.54e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNGHSHGpmcFVEFDDVSFATRALA 600
Cdd:cd12229    6 LFVGNLPHDITEDELKEFFSRFGNVLELRINSKGGGGRLPNFG---FVVFDDPEAVQKILA 63
RRM1_2_CoAA_like cd12343
RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator ...
540-558 5.78e-04

RNA recognition motif 1 (RRM1) and 2 (RRM2) found in RRM-containing coactivator activator/modulator (CoAA) and similar proteins; This subfamily corresponds to the RRM in CoAA (also known as RBM14 or PSP2) and RNA-binding protein 4 (RBM4). CoAA is a heterogeneous nuclear ribonucleoprotein (hnRNP)-like protein identified as a nuclear receptor coactivator. It mediates transcriptional coactivation and RNA splicing effects in a promoter-preferential manner, and is enhanced by thyroid hormone receptor-binding protein (TRBP). CoAA contains two N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a TRBP-interacting domain. RBM4 is a ubiquitously expressed splicing factor with two isoforms, RBM4A (also known as Lark homolog) and RBM4B (also known as RBM30), which are very similar in structure and sequence. RBM4 may also function as a translational regulator of stress-associated mRNAs as well as play a role in micro-RNA-mediated gene regulation. RBM4 contains two N-terminal RRMs, a CCHC-type zinc finger, and three alanine-rich regions within their C-terminal regions. This family also includes Drosophila RNA-binding protein lark (Dlark), a homolog of human RBM4. It plays an important role in embryonic development and in the circadian regulation of adult eclosion. Dlark shares high sequence similarity with RBM4 at the N-terminal region. However, Dlark has three proline-rich segments instead of three alanine-rich segments within the C-terminal region.


Pssm-ID: 409779 [Multi-domain]  Cd Length: 66  Bit Score: 38.75  E-value: 5.78e-04
                         10
                 ....*....|....*....
gi 767227475 540 LYVGNLPSDATEQELRQLF 558
Cdd:cd12343    2 IFVGNLPDAATSEELRALF 20
RRM_PPIE cd12347
RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This ...
540-607 6.32e-04

RNA recognition motif (RRM) found in cyclophilin-33 (Cyp33) and similar proteins; This subfamily corresponds to the RRM of Cyp33, also termed peptidyl-prolyl cis-trans isomerase E (PPIase E), or cyclophilin E, or rotamase E. Cyp33 is a nuclear RNA-binding cyclophilin with an N-terminal RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal PPIase domain. Cyp33 possesses RNA-binding activity and preferentially binds to polyribonucleotide polyA and polyU, but hardly to polyG and polyC. It binds specifically to mRNA, which can stimulate its PPIase activity. Moreover, Cyp33 interacts with the third plant homeodomain (PHD3) zinc finger cassette of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly-A RNA sequence through its RRM domain. It further mediates downregulation of the expression of MLL target genes HOXC8, HOXA9, CDKN1B, and C-MYC, in a proline isomerase-dependent manner. Cyp33 also possesses a PPIase activity that catalyzes cis-trans isomerization of the peptide bond preceding a proline, which has been implicated in the stimulation of folding and conformational changes in folded and unfolded proteins. The PPIase activity can be inhibited by the immunosuppressive drug cyclosporin A.


Pssm-ID: 409783 [Multi-domain]  Cd Length: 75  Bit Score: 38.74  E-value: 6.32e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNGHSHGpmcFVEFDDVSFATRAL-----AELYGRQL 607
Cdd:cd12347    1 LYVGGLAEEVDEKVLHAAFIPFGDIVDIQIPLDYETEKHRGFA---FVEFEEAEDAAAAIdnmneSELFGRTI 70
RRM2_U1A cd12480
RNA recognition motif 2 (RRM2) found in vertebrate U1 small nuclear ribonucleoprotein A (U1 ...
527-624 7.36e-04

RNA recognition motif 2 (RRM2) found in vertebrate U1 small nuclear ribonucleoprotein A (U1 snRNP A or U1-A or U1A); This subgroup corresponds to the RRM2 of U1A (also termed U1 snRNP A or U1-A), an RNA-binding protein associated with the U1 snRNP, a small RNA-protein complex involved in pre-mRNA splicing. U1A binds with high affinity and specificity to stem-loop II (SLII) of U1 snRNA. It is predominantly a nuclear protein that shuttles between the nucleus and the cytoplasm independently of interactions with U1 snRNA. U1A may be involved in RNA 3'-end processing, specifically cleavage, splicing and polyadenylation, through interacting with a large number of non-snRNP proteins, including polypyrimidine tract binding protein (PTB), polypyrimidine-tract binding protein-associated factor (PSF), and non-POU-domain-containing, octamer-binding (NONO), DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5). U1A also binds to a flavivirus NS5 protein and plays an important role in virus replication. It contains two RNA recognition motifs (RRMs); the N-terminal RRM (RRM1) binds tightly and specifically to the U1 snRNA SLII and its own 3'-UTR, while in contrast, the C-terminal RRM (RRM2) does not appear to associate with any RNA and it may be free for binding other proteins. U1A also contains a proline-rich region, and a nuclear localization signal (NLS) in the central domain that is responsible for its nuclear import.


Pssm-ID: 409908 [Multi-domain]  Cd Length: 86  Bit Score: 38.94  E-value: 7.36e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 527 PANPADQNPPCNTLYVGNLPSDATEQELRQLFSGQEGFRRLSFrnkntTSNGHShgpMCFVEFDDVSFATRALAELYGRQ 606
Cdd:cd12480    1 PPQPVSENPPNHILFLTNLPEETNELMLSMLFNQFPGFKEVRL-----VPGRHD---IAFVEFDNEVQAGAAREALQGFK 72
                         90
                 ....*....|....*...
gi 767227475 607 LPRSTvsskgGIRLSFSK 624
Cdd:cd12480   73 ITQSN-----AMKISFAK 85
RRM1_PUB1 cd12614
RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated ...
540-607 8.63e-04

RNA recognition motif 1 (RRM1) found in yeast nuclear and cytoplasmic polyadenylated RNA-binding protein PUB1 and similar proteins; This subgroup corresponds to the RRM1 of yeast protein PUB1, also termed ARS consensus-binding protein ACBP-60, or poly uridylate-binding protein, or poly(U)-binding protein. PUB1 has been identified as both, a heterogeneous nuclear RNA-binding protein (hnRNP) and a cytoplasmic mRNA-binding protein (mRNP), which may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. It is distributed in both, the nucleus and the cytoplasm, and binds to poly(A)+ RNA (mRNA or pre-mRNA). Although it is one of the major cellular proteins cross-linked by UV light to polyadenylated RNAs in vivo, PUB1 is nonessential for cell growth in yeast. PUB1 also binds to T-rich single stranded DNA (ssDNA); however, there is no strong evidence implicating PUB1 in the mechanism of DNA replication. PUB1 contains three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a GAR motif (glycine and arginine rich stretch) that is located between RRM2 and RRM3.


Pssm-ID: 410026 [Multi-domain]  Cd Length: 74  Bit Score: 38.18  E-value: 8.63e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQ---EGFRRLSFRNknttSNGHSHGpmcFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12614    1 LYVGNLDPRVTEDLLQEIFAVTgpvENCKIIPDKN----SKGVNYG---FVEYYDRRSAEIAIQTLNGRQI 64
RRM2_RBM40_like cd12239
RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; ...
537-604 9.18e-04

RNA recognition motif 2 (RRM2) found in RNA-binding protein 40 (RBM40) and similar proteins; This subfamily corresponds to the RRM2 of RBM40 and the RRM of RBM41. RBM40, also known as RNA-binding region-containing protein 3 (RNPC3) or U11/U12 small nuclear ribonucleoprotein 65 kDa protein (U11/U12-65K protein). It serves as a bridging factor between the U11 and U12 snRNPs. It contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), connected by a linker that includes a proline-rich region. It binds to the U11-associated 59K protein via its RRM1 and employs the RRM2 to bind hairpin III of the U12 small nuclear RNA (snRNA). The proline-rich region might be involved in protein-protein interactions. RBM41 contains only one RRM. Its biological function remains unclear.


Pssm-ID: 409685 [Multi-domain]  Cd Length: 82  Bit Score: 38.36  E-value: 9.18e-04
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 767227475 537 CNTLYVGNLPSDATEQELRQLFSgqegfrrlSFRNKNTTSNG------HSHGPM---CFVEFDDVSFATRALAELYG 604
Cdd:cd12239    1 SNRLYVKNLSKRVSEKDLKYIFG--------RFVDSSSEEKNmfdirlMTEGRMkgqAFITFPSEELAEKALNLTNG 69
RRM3_Nop4p cd12676
RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; ...
538-615 1.10e-03

RNA recognition motif 3 (RRM3) found in yeast nucleolar protein 4 (Nop4p) and similar proteins; This subgroup corresponds to the RRM3 of Nop4p (also known as Nop77p), encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 410077 [Multi-domain]  Cd Length: 107  Bit Score: 38.95  E-value: 1.10e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 538 NTLYVGNLPSDATEQELRQLFSgqeGFRRLSF----RNKNTtsnGHSHGpMCFVEFDDVSFATRALAElyGRQLPRSTVS 613
Cdd:cd12676    2 RTLFVRNLPFDATEDELYSHFS---QFGPLKYarvvKDPAT---GRSKG-TAFVKFKNKEDADNCLSA--APEAQSTSLL 72

                 ..
gi 767227475 614 SK 615
Cdd:cd12676   73 EK 74
RRM4_I_PABPs cd12381
RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily ...
540-605 1.24e-03

RNA recognition motif 4 (RRM4) found in type I polyadenylate-binding proteins; This subfamily corresponds to the RRM4 of type I poly(A)-binding proteins (PABPs), highly conserved proteins that bind to the poly(A) tail present at the 3' ends of most eukaryotic mRNAs. They have been implicated in theThe CD corresponds to the RRM. regulation of poly(A) tail length during the polyadenylation reaction, translation initiation, mRNA stabilization by influencing the rate of deadenylation and inhibition of mRNA decapping. The family represents type I polyadenylate-binding proteins (PABPs), including polyadenylate-binding protein 1 (PABP-1 or PABPC1), polyadenylate-binding protein 3 (PABP-3 or PABPC3), polyadenylate-binding protein 4 (PABP-4 or APP-1 or iPABP), polyadenylate-binding protein 5 (PABP-5 or PABPC5), polyadenylate-binding protein 1-like (PABP-1-like or PABPC1L), polyadenylate-binding protein 1-like 2 (PABPC1L2 or RBM32), polyadenylate-binding protein 4-like (PABP-4-like or PABPC4L), yeast polyadenylate-binding protein, cytoplasmic and nuclear (PABP or ACBP-67), and similar proteins. PABP-1 is an ubiquitously expressed multifunctional protein that may play a role in 3' end formation of mRNA, translation initiation, mRNA stabilization, protection of poly(A) from nuclease activity, mRNA deadenylation, inhibition of mRNA decapping, and mRNP maturation. Although PABP-1 is thought to be a cytoplasmic protein, it is also found in the nucleus. PABP-1 may be involved in nucleocytoplasmic trafficking and utilization of mRNP particles. PABP-1 contains four copies of RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), a less well conserved linker region, and a proline-rich C-terminal conserved domain (CTD). PABP-3 is a testis-specific poly(A)-binding protein specifically expressed in round spermatids. It is mainly found in mammalian and may play an important role in the testis-specific regulation of mRNA homeostasis. PABP-3 shows significant sequence similarity to PABP-1. However, it binds to poly(A) with a lower affinity than PABP-1. Moreover, PABP-1 possesses an A-rich sequence in its 5'-UTR and allows binding of PABP and blockage of translation of its own mRNA. In contrast, PABP-3 lacks the A-rich sequence in its 5'-UTR. PABP-4 is an inducible poly(A)-binding protein (iPABP) that is primarily localized to the cytoplasm. It shows significant sequence similarity to PABP-1 as well. The RNA binding properties of PABP-1 and PABP-4 appear to be identical. PABP-5 is encoded by PABPC5 gene within the X-specific subinterval, and expressed in fetal brain and in a range of adult tissues in mammalian, such as ovary and testis. It may play an important role in germ cell development. Moreover, unlike other PABPs, PABP-5 contains only four RRMs, but lacks both the linker region and the CTD. PABP-1-like and PABP-1-like 2 are the orthologs of PABP-1. PABP-4-like is the ortholog of PABP-5. Their cellular functions remain unclear. The family also includes the yeast PABP, a conserved poly(A) binding protein containing poly(A) tails that can be attached to the 3'-ends of mRNAs. The yeast PABP and its homologs may play important roles in the initiation of translation and in mRNA decay. Like vertebrate PABP-1, the yeast PABP contains four RRMs, a linker region, and a proline-rich CTD as well. The first two RRMs are mainly responsible for specific binding to poly(A). The proline-rich region may be involved in protein-protein interactions.


Pssm-ID: 409815 [Multi-domain]  Cd Length: 79  Bit Score: 38.02  E-value: 1.24e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 767227475 540 LYVGNLPSDATEQELRQLFSgqeGFRRLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGR 605
Cdd:cd12381    4 LYVKNLDDTIDDEKLREEFS---PFGTITSAKVMTDEGGRSKG-FGFVCFSSPEEATKAVTEMNGR 65
RRM1_Crp79 cd21619
RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and ...
538-609 1.31e-03

RNA recognition motif 1 (RRM1) found in Schizosaccharomyces pombe mRNA export factor Crp79 and similar proteins; Crp79, also called meiotic expression up-regulated protein 5 (Mug5), or polyadenylate-binding protein crp79, or PABP, or poly(A)-binding protein, is an auxiliary mRNA export factor that binds the poly(A) tail of mRNA and is involved in the export of mRNA from the nucleus to the cytoplasm. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The model corresponds to the first RRM motif.


Pssm-ID: 410198 [Multi-domain]  Cd Length: 78  Bit Score: 37.89  E-value: 1.31e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 538 NTLYVGNLPSDATEQELRQLFS--GQ-EGFRR---LSFRNKNTTSNGhshgpmcFVEFDDVSFATRALAELYGRQLPR 609
Cdd:cd21619    2 NTIYVGNIDMTINEDALEKIFSryGQvESVRRppiHTDKADRTTGFG-------FIKYTDAESAERAMQQADGILLGR 72
RRM1_FCA cd12633
RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar ...
540-608 1.45e-03

RNA recognition motif 1 (RRM1) found in plant flowering time control protein FCA and similar proteins; This subgroup corresponds to the RRM1 of FCA, a gene controlling flowering time in Arabidopsis, encoding a flowering time control protein that functions in the posttranscriptional regulation of transcripts involved in the flowering process. FCA contains two RNA recognition motifs (RRMs), also known as RBDs (RNA binding domains) or RNP (ribonucleoprotein domains), and a WW protein interaction domain.


Pssm-ID: 241077 [Multi-domain]  Cd Length: 80  Bit Score: 38.02  E-value: 1.45e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSF-RNKNTtsnGHSHGpMCFVEFDDVSFATRALAELYG-RQLP 608
Cdd:cd12633    2 LFVGSVPRTITEQEVRPMFEEHGNVLEVAIiKDKRT---GHQQG-CCFVKYSTRDEADRAIRALHNqRTLP 68
RRM2_Prp24 cd12297
RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar ...
539-615 1.82e-03

RNA recognition motif 2 in fungal pre-messenger RNA splicing protein 24 (Prp24) and similar proteins; This subfamily corresponds to the RRM2 of Prp24, also termed U4/U6 snRNA-associated-splicing factor PRP24 (U4/U6 snRNP), an RNA-binding protein with four well conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). It facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 specifically binds free U6 RNA primarily with RRMs 1 and 2 and facilitates pairing of U6 RNA bases with U4 RNA bases. Additionally, it may also be involved in dissociation of the U4/U6 complex during spliceosome activation.


Pssm-ID: 409738 [Multi-domain]  Cd Length: 78  Bit Score: 37.74  E-value: 1.82e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFsGQEG------FRRLSFrnknttsngHSHGPMCFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:cd12297    2 TLWVTNFPPSYDERSIRDLF-GDYGvilsvrLPSLRY---------NTSRRFCYIDFTSPESARAAVELLNGLLEEGYTL 71

                 ...
gi 767227475 613 SSK 615
Cdd:cd12297   72 VVK 74
RRM2_gar2 cd12448
RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This ...
540-607 1.84e-03

RNA recognition motif 2 (RRM2) found in yeast protein gar2 and similar proteins; This subfamily corresponds to the RRM2 of yeast protein gar2, a novel nucleolar protein required for 18S rRNA and 40S ribosomal subunit accumulation. It shares similar domain architecture with nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. The highly phosphorylated N-terminal domain of gar2 is made up of highly acidic regions separated from each other by basic sequences, and contains multiple phosphorylation sites. The central domain of gar2 contains two closely adjacent N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RGG (or GAR) domain of gar2 is rich in glycine, arginine and phenylalanine residues.


Pssm-ID: 409882 [Multi-domain]  Cd Length: 73  Bit Score: 37.39  E-value: 1.84e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTSNGHSHGpmcFVEFDDVSFATRALA-----ELYGRQL 607
Cdd:cd12448    1 LFVGNLPFSATQDALYEAFSQHGSIVSVRLPTDRETGQPKGFG---YVDFSTIDSAEAAIDalggeYIDGRPI 70
RRM2_Nop13p_fungi cd12397
RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar ...
540-599 2.07e-03

RNA recognition motif 2 (RRM2) found in yeast nucleolar protein 13 (Nop13p) and similar proteins; This subfamily corresponds to the RRM2 of Nop13p encoded by YNL175c from Saccharomyces cerevisiae. It shares high sequence similarity with nucleolar protein 12 (Nop12p). Both Nop12p and Nop13p are not essential for growth. However, unlike Nop12p that is localized to the nucleolus, Nop13p localizes primarily to the nucleolus but is also present in the nucleoplasm to a lesser extent. Nop13p contains two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409831 [Multi-domain]  Cd Length: 76  Bit Score: 37.42  E-value: 2.07e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTsnGHSHGpMCFVEFDDVSFATRAL 599
Cdd:cd12397    1 LFVGNLSFETTEEDLRKHFAPAGKIRKVRMATFEDS--GKCKG-FAFVDFKEIESATNAV 57
RRM_eIF4H cd12401
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and ...
535-607 2.15e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4H (eIF-4H) and similar proteins; This subfamily corresponds to the RRM of eIF-4H, also termed Williams-Beuren syndrome chromosomal region 1 protein, which, together with elf-4B/eIF-4G, serves as the accessory protein of RNA helicase eIF-4A. eIF-4H contains a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain). It stimulates protein synthesis by enhancing the helicase activity of eIF-4A in the initiation step of mRNA translation.


Pssm-ID: 409835 [Multi-domain]  Cd Length: 84  Bit Score: 37.65  E-value: 2.15e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 535 PPCnTLYVGNLPSDATEQELRQLFSGQEgFR--RLsFRNKNTTS-NGhshgpMCFVEFDDVSFATRAL----AELYGRQL 607
Cdd:cd12401    4 PPF-TAYVGNLPFNTVQGDLDAIFKDLK-VRsvRL-VRDRETDKfKG-----FCYVEFEDLESLKEALeydgALFEDRPL 75
RRM1_NUCLs cd12450
RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This ...
539-607 2.20e-03

RNA recognition motif 1 (RRM1) found in nucleolin-like proteins mainly from plants; This subfamily corresponds to the RRM1 of a group of plant nucleolin-like proteins, including nucleolin 1 (also termed protein nucleolin like 1) and nucleolin 2 (also termed protein nucleolin like 2, or protein parallel like 1). They play roles in the regulation of ribosome synthesis and in the growth and development of plants. Like yeast nucleolin, nucleolin-like proteins possess two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains).


Pssm-ID: 409884 [Multi-domain]  Cd Length: 78  Bit Score: 37.38  E-value: 2.20e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFR--RLSFRNKNTTSNGHSHgpmcfVEFDDVSFATRAL----AELYGRQL 607
Cdd:cd12450    1 TLFVGNLSWSATQDDLENFFSDCGEVVdvRIAMDRDDGRSKGFGH-----VEFASAESAQKALeksgQDLGGREI 70
RRM1_p54nrb cd12588
RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein ...
540-559 2.48e-03

RNA recognition motif 1 (RRM1) found in vertebrate 54 kDa nuclear RNA- and DNA-binding protein (p54nrb); This subgroup corresponds to the RRM1 of p54nrb, also termed non-POU domain-containing octamer-binding protein (NonO), or 55 kDa nuclear protein (NMT55), or DNA-binding p52/p100 complex 52 kDa subunit. p54nrb is a multifunctional protein involved in numerous nuclear processes including transcriptional regulation, splicing, DNA unwinding, nuclear retention of hyperedited double-stranded RNA, viral RNA processing, control of cell proliferation, and circadian rhythm maintenance. It is ubiquitously expressed and highly conserved in vertebrates. p54nrb binds both, single- and double-stranded RNA and DNA, and also possesses inherent carbonic anhydrase activity. It forms a heterodimer with paraspeckle component 1 (PSPC1 or PSP1), localizing to paraspeckles in an RNA-dependent manneras well as with polypyrimidine tract-binding protein-associated-splicing factor (PSF). p54nrb contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), at the N-terminus.


Pssm-ID: 410001 [Multi-domain]  Cd Length: 71  Bit Score: 36.85  E-value: 2.48e-03
                         10        20
                 ....*....|....*....|
gi 767227475 540 LYVGNLPSDATEQELRQLFS 559
Cdd:cd12588    4 LFVGNLPPDITEEEMRKLFE 23
RRM_eIF4B cd12402
RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and ...
539-607 2.55e-03

RNA recognition motif (RRM) found in eukaryotic translation initiation factor 4B (eIF-4B) and similar proteins; This subfamily corresponds to the RRM of eIF-4B, a multi-domain RNA-binding protein that has been primarily implicated in promoting the binding of 40S ribosomal subunits to mRNA during translation initiation. It contains two RNA-binding domains; the N-terminal well-conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), binds the 18S rRNA of the 40S ribosomal subunit and the C-terminal basic domain (BD), including two arginine-rich motifs (ARMs), binds mRNA during initiation, and is primarily responsible for the stimulation of the helicase activity of eIF-4A. eIF-4B also contains a DRYG domain (a region rich in Asp, Arg, Tyr, and Gly amino acids) in the middle, which is responsible for both, self-association of eIF-4B and binding to the p170 subunit of eIF3. Additional research indicates that eIF-4B can interact with the poly(A) binding protein (PABP) in mammalian cells, which can stimulate both, the eIF-4B-mediated activation of the helicase activity of eIF-4A and binding of poly(A) by PABP. eIF-4B has also been shown to interact specifically with the internal ribosome entry sites (IRES) of several picornaviruses which facilitate cap-independent translation initiation.


Pssm-ID: 409836 [Multi-domain]  Cd Length: 81  Bit Score: 37.20  E-value: 2.55e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 539 TLYVGNLPSDATEQELRQLFsgqEGFRRLSFRNKNTTSNGHSHGpMCFVEFDDVSFATRALA----ELYGRQL 607
Cdd:cd12402    4 TAYLGNLPYDVTEDDIEDFF---RGLNISSVRLPRENGPGRLRG-FGYVEFEDRESLIQALSlneeSLKNRRI 72
RRM2_U2AF65 cd12231
RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor ...
538-607 2.73e-03

RNA recognition motif 2 (RRM2) found in U2 large nuclear ribonucleoprotein auxiliary factor U2AF 65 kDa subunit (U2AF65) and similar proteins; This subfamily corresponds to the RRM2 of U2AF65 and dU2AF50. U2AF65, also termed U2AF2, is the large subunit of U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF), which has been implicated in the recruitment of U2 snRNP to pre-mRNAs and is a highly conserved heterodimer composed of large and small subunits. U2AF65 specifically recognizes the intron polypyrimidine tract upstream of the 3' splice site and promotes binding of U2 snRNP to the pre-mRNA branchpoint. U2AF65 also plays an important role in the nuclear export of mRNA. It facilitates the formation of a messenger ribonucleoprotein export complex, containing both the NXF1 receptor and the RNA substrate. Moreover, U2AF65 interacts directly and specifically with expanded CAG RNA, and serves as an adaptor to link expanded CAG RNA to NXF1 for RNA export. U2AF65 contains an N-terminal RS domain rich in arginine and serine, followed by a proline-rich segment and three C-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The N-terminal RS domain stabilizes the interaction of U2 snRNP with the branch point (BP) by contacting the branch region, and further promotes base pair interactions between U2 snRNA and the BP. The proline-rich segment mediates protein-protein interactions with the RRM domain of the small U2AF subunit (U2AF35 or U2AF1). The RRM1 and RRM2 are sufficient for specific RNA binding, while RRM3 is responsible for protein-protein interactions. The family also includes Splicing factor U2AF 50 kDa subunit (dU2AF50), the Drosophila ortholog of U2AF65. dU2AF50 functions as an essential pre-mRNA splicing factor in flies. It associates with intronless mRNAs and plays a significant and unexpected role in the nuclear export of a large number of intronless mRNAs.


Pssm-ID: 409678 [Multi-domain]  Cd Length: 77  Bit Score: 36.86  E-value: 2.73e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767227475 538 NTLYVGNLPSDATEQELRQLFsgqEGFRRL-SFRNKNTTSNGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12231    1 NKLFIGGLPNYLNEDQVKELL---QSFGKLkAFNLVKDSATGLSKG-YAFCEYVDDNVTDQAIAGLNGMQL 67
RRM2_MRD1 cd12566
RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 ...
540-605 3.29e-03

RNA recognition motif 2 (RRM2) found in yeast multiple RNA-binding domain-containing protein 1 (MRD1) and similar proteins; This subgroup corresponds to the RRM2 of MRD1 which is encoded by a novel yeast gene MRD1 (multiple RNA-binding domain). It is well-conserved in yeast and its homologs exist in all eukaryotes. MRD1 is present in the nucleolus and the nucleoplasm. It interacts with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs (snoRNAs). It is essential for the initial processing at the A0-A2 cleavage sites in the 35 S pre-rRNA. MRD1 contains 5 conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which may play an important structural role in organizing specific rRNA processing events.


Pssm-ID: 409982 [Multi-domain]  Cd Length: 79  Bit Score: 37.01  E-value: 3.29e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 540 LYVGNLPSDATEQELRQLFS--GQEGFRRLSFRNKNTTSNGhshgpMCFVEFDDVSFATRALAELYGR 605
Cdd:cd12566    5 LFLRNLPYSTKEDDLQKLFSkfGEVSEVHVPIDKKTKKSKG-----FAYVLFLDPEDAVQAYNELDGK 67
RRM1_MEI2_like cd12524
RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to ...
539-624 3.39e-03

RNA recognition motif 1 (RRM1) found in plant Mei2-like proteins; This subgroup corresponds to the RRM1 of Mei2-like proteins that represent an ancient eukaryotic RNA-binding proteins family. Their corresponding Mei2-like genes appear to have arisen early in eukaryote evolution, been lost from some lineages such as Saccharomyces cerevisiae and metazoans, and diversified in the plant lineage. The plant Mei2-like genes may function in cell fate specification during development, rather than as stimulators of meiosis. Members in this family contain three RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains). The C-terminal RRM (RRM3) is unique to Mei2-like proteins and it is highly conserved between plants and fungi. Up to date, the intracellular localization, RNA target(s), cellular interactions and phosphorylation states of Mei2-like proteins in plants remain unclear.


Pssm-ID: 409944 [Multi-domain]  Cd Length: 77  Bit Score: 36.87  E-value: 3.39e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNttsnghsHGpMCFVEFDDVSFATRALAELYGRQLPRSTVSskggI 618
Cdd:cd12524    3 TLFVRNINSSVEDEELRALFEQFGEIRTLYTACKH-------RG-FIMVSYYDIRAAQSAKRALQGTELGGRKLD----I 70

                 ....*.
gi 767227475 619 RLSFSK 624
Cdd:cd12524   71 HFSIPK 76
RRM1_2_CID8_like cd12225
RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting ...
539-626 3.54e-03

RNA recognition motif 1 and 2 (RRM1, RRM2) found in Arabidopsis thaliana CTC-interacting domain protein CID8, CID9, CID10, CID11, CID12, CID 13 and similar proteins; This subgroup corresponds to the RRM domains found in A. thaliana CID8, CID9, CID10, CID11, CID12, CID 13 and mainly their plant homologs. These highly related RNA-binding proteins contain an N-terminal PAM2 domain (PABP-interacting motif 2), two RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and a basic region that resembles a bipartite nuclear localization signal. The biological role of this family remains unclear.


Pssm-ID: 409672 [Multi-domain]  Cd Length: 76  Bit Score: 36.67  E-value: 3.54e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFSgQEGfrrlsFRNKNTTSNGHSHGPMCFVEFDDVSFATRALAeLYGrqlprsTVSSKGGI 618
Cdd:cd12225    2 TIHVGGIDGSLSEDELADYFS-NCG-----EVTQVRLCGDRVHTRFAWVEFATDASALSALN-LDG------TTLGGHPL 68

                 ....*...
gi 767227475 619 RLSFSKNP 626
Cdd:cd12225   69 RVSPSKTA 76
RRM2_Spen cd12309
RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily ...
539-609 3.82e-03

RNA recognition motif 2 (RRM2) found in the Spen (split end) protein family; This subfamily corresponds to the RRM2 domain in the Spen (split end) protein family which includes RNA binding motif protein 15 (RBM15), putative RNA binding motif protein 15B (RBM15B), and similar proteins found in Metazoa. RBM15, also termed one-twenty two protein 1 (OTT1), conserved in eukaryotes, is a novel mRNA export factor and component of the NXF1 pathway. It binds to NXF1 and serves as receptor for the RNA export element RTE. It also possess mRNA export activity and can facilitate the access of DEAD-box protein DBP5 to mRNA at the nuclear pore complex (NPC). RNA-binding protein 15B (RBM15B), also termed one twenty-two 3 (OTT3), is a paralog of RBM15 and therefore has post-transcriptional regulatory activity. It is a nuclear protein sharing with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Members in this family belong to the Spen (split end) protein family, which share a domain architecture comprising of three N-terminal RNA recognition motifs (RRMs), also known as RBD (RNA binding domain) or RNP (ribonucleoprotein domain), and a C-terminal SPOC (Spen paralog and ortholog C-terminal) domain.


Pssm-ID: 240755 [Multi-domain]  Cd Length: 79  Bit Score: 36.61  E-value: 3.82e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 767227475 539 TLYVGNLPSDATEQELRQLFsGQEGFRRLSFRNKNTTSNGHSHGpmcFVEFDDVSFATRALAELYGRQLPR 609
Cdd:cd12309    4 TLFVGNLEITITEEELRRAF-ERYGVVEDVDIKRPPRGQGNAYA---FVKFLNLDMAHRAKVAMSGQYIGR 70
RRM1_PSF cd12587
RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB) ...
540-607 4.33e-03

RNA recognition motif 1 (RRM1) found in vertebrate polypyrimidine tract-binding protein (PTB)-associated-splicing factor (PSF); This subgroup corresponds to the RRM1 of PSF, also termed proline- and glutamine-rich splicing factor, or 100 kDa DNA-pairing protein (POMp100), or 100 kDa subunit of DNA-binding p52/p100 complex, a multifunctional protein that mediates diverse activities in the cell. It is ubiquitously expressed and highly conserved in vertebrates. PSF binds not only RNA but also both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and facilitates the renaturation of complementary ssDNAs. Besides, it promotes the formation of D-loops in superhelical duplex DNA, and is involved in cell proliferation. PSF can also interact with multiple factors. It is an RNA-binding component of spliceosomes and binds to insulin-like growth factor response element (IGFRE). PSF functions as a transcriptional repressor interacting with Sin3A and mediating silencing through the recruitment of histone deacetylases (HDACs) to the DNA binding domain (DBD) of nuclear hormone receptors. Additionally, PSF is an essential pre-mRNA splicing factor and is dissociated from PTB and binds to U1-70K and serine-arginine (SR) proteins during apoptosis. PSF forms a heterodimer with the nuclear protein p54nrb, also known as non-POU domain-containing octamer-binding protein (NonO). The PSF/p54nrb complex displays a variety of functions, such as DNA recombination and RNA synthesis, processing, and transport. PSF contains two conserved RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), which are responsible for interactions with RNA and for the localization of the protein in speckles. It also contains an N-terminal region rich in proline, glycine, and glutamine residues, which may play a role in interactions recruiting other molecules.


Pssm-ID: 410000 [Multi-domain]  Cd Length: 71  Bit Score: 36.38  E-value: 4.33e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 540 LYVGNLPSDATEQELRQLFS--GQEGfrrLSFRNKnttsnGHSHGpmcFVEFDDVSFATRALAEL-----YGRQL 607
Cdd:cd12587    4 LFVGNLPADITEDEFKRLFAkyGEPG---EVFINK-----GKGFG---FIKLESRALAEIAKAELddtpmRGRQL 67
RRM_ENOX cd12228
RNA recognition motif (RRM) found in the cell surface Ecto-NOX disulfide-thiol exchanger ...
535-600 4.44e-03

RNA recognition motif (RRM) found in the cell surface Ecto-NOX disulfide-thiol exchanger (ECTO-NOX or ENOX) proteins; This subgroup corresponds to the conserved RNA recognition motif (RRM) in ECTO-NOX proteins (also termed ENOX), comprising a family of plant and animal NAD(P)H oxidases exhibiting both, oxidative and protein disulfide isomerase-like, activities. They are growth-related and drive cell enlargement, and may play roles in aging and neurodegenerative diseases. ENOX proteins function as terminal oxidases of plasma membrane electron transport (PMET) through catalyzing electron transport from plasma membrane quinones to extracellular oxygen, forming water as a product. They are also hydroquinone oxidases that oxidize externally supplied NADH, hence NOX. ENOX proteins harbor a di-copper center that lack flavin. ENOX proteins display protein disulfide interchange activity that is also possessed by protein disulfide isomerase. In contrast to the classic protein disulfide isomerases, ENOX proteins lack the double CXXC motif. This family includes two ENOX proteins, ENOX1 and ENOX2. ENOX1, also termed candidate growth-related and time keeping constitutive hydroquinone [NADH] oxidase (cCNOX), or cell proliferation-inducing gene 38 protein, or Constitutive Ecto-NOX (cNOX), is the constitutively expressed cell surface NADH (ubiquinone) oxidase that is ubiquitous and refractory to drugs. ENOX2, also termed APK1 antigen, or cytosolic ovarian carcinoma antigen 1, or tumor-associated hydroquinone oxidase (tNOX), is a cancer-specific variant of ENOX1 and plays a key role in cell proliferation and tumor progression. In contrast to ENOX1, ENOX2 is drug-responsive and harbors a drug binding site to which the cancer-specific S-peptide tagged pan-ENOX2 recombinant (scFv) is directed. Moreover, ENOX2 is specifically inhibited by a variety of quinone site inhibitors that have anticancer activity and is unique to the surface of cancer cells. ENOX proteins contain many functional motifs.


Pssm-ID: 409675 [Multi-domain]  Cd Length: 84  Bit Score: 36.63  E-value: 4.44e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 535 PPCNTLYVGNLPSDATEQELRQLFS--GQEGFRRLSFRNknttsnghshgpMCFVEFDDVSFATRALA 600
Cdd:cd12228    4 PGCKTVFVGGLPENATEEIIREVFEqcGEIIAIRMSKKN------------FCHIRFAEEFAVDKAIY 59
RRM1_RBM28_like cd12413
RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
539-607 5.32e-03

RNA recognition motif 1 (RRM1) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM1 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409847 [Multi-domain]  Cd Length: 79  Bit Score: 36.42  E-value: 5.32e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 767227475 539 TLYVGNLPSDATEQELRQLFSgQEGFRRLSF--RNKNTTSnghshgpmC----FVEFDDVSFATRALAELYGRQL 607
Cdd:cd12413    1 TLFVRNLPYDTTDEQLEELFS-DVGPVKRCFvvKDKGKDK--------CrgfgYVTFALAEDAQRALEEVKGKKF 66
RRM2_RAVER1 cd12665
RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 ...
540-607 6.04e-03

RNA recognition motif 2 (RRM2) found found in vertebrate ribonucleoprotein PTB-binding 1 (raver-1); This subgroup corresponds to the RRM2 of raver-1, a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-1 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two PTB-binding [SG][IL]LGxxP motifs. Raver1 binds to PTB through the PTB-binding motifs at its C-terminal half, and binds to other partners, such as RNA having the sequence UCAUGCAGUCUG, through its N-terminal RRMs. Interestingly, the 12-nucleotide RNA having the sequence UCAUGCAGUCUG with micromolar affinity is found in vinculin mRNA. Additional research indicates that the RRM1 of raver-1 directs its interaction with the tail domain of activated vinculin. Then the raver1/vinculin tail (Vt) complex binds to vinculin mRNA, which is permissive for vinculin binding to F-actin.


Pssm-ID: 410066 [Multi-domain]  Cd Length: 77  Bit Score: 36.06  E-value: 6.04e-03
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTsnGHSHGpMCFVEFDDVSFATRALAELYGRQL 607
Cdd:cd12665    2 LCIANLPPSYTQQQFEELVRPFGNLERCFLVYSETT--GHSKG-YGFVEYMKKDSAARAKSDLLGKQL 66
RRM_RBM25 cd12446
RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; ...
538-608 7.36e-03

RNA recognition motif (RRM) found in eukaryotic RNA-binding protein 25 and similar proteins; This subfamily corresponds to the RRM of RBM25, also termed Arg/Glu/Asp-rich protein of 120 kDa (RED120), or protein S164, or RNA-binding region-containing protein 7, an evolutionary-conserved splicing coactivator SRm160 (SR-related nuclear matrix protein of 160 kDa, )-interacting protein. RBM25 belongs to a family of RNA-binding proteins containing a well conserved RNA recognition motif (RRM), also termed RBD (RNA binding domain) or RNP (ribonucleoprotein domain), at the N-terminus, a RE/RD-rich (ER) central region, and a C-terminal proline-tryptophan-isoleucine (PWI) motif. It localizes to the nuclear speckles and associates with multiple splicing components, including splicing cofactors SRm160/300, U snRNAs, assembled splicing complexes, and spliced mRNAs. It may play an important role in pre-mRNA processing by coupling splicing with mRNA 3'-end formation. Additional research indicates that RBM25 is one of the RNA-binding regulators that direct the alternative splicing of apoptotic factors. It can activate proapoptotic Bcl-xS 5'ss by binding to the exonic splicing enhancer, CGGGCA, and stabilize the pre-mRNA-U1 snRNP through interaction with hLuc7A, a U1 snRNP-associated factor.


Pssm-ID: 409880 [Multi-domain]  Cd Length: 83  Bit Score: 35.97  E-value: 7.36e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 767227475 538 NTLYVGNLPSDATEQELRQLFsgQEGFRRLSF-RNKNTTSNGHSHGpmcFVEFDDVSFATRALAELYGRQLP 608
Cdd:cd12446    1 TTVFVGNIPDDVSDDFIRQLL--EKCGKVLSWkRVQDPSGKLKAFG---FCEFEDPEGALRALRLLNGLELG 67
RRM3_RBM28_like cd12415
RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; ...
539-607 7.42e-03

RNA recognition motif 3 (RRM3) found in RNA-binding protein 28 (RBM28) and similar proteins; This subfamily corresponds to the RRM3 of RBM28 and Nop4p. RBM28 is a specific nucleolar component of the spliceosomal small nuclear ribonucleoproteins (snRNPs), possibly coordinating their transition through the nucleolus. It specifically associates with U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs), and may play a role in the maturation of both small nuclear and ribosomal RNAs. RBM28 has four RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), and an extremely acidic region between RRM2 and RRM3. The family also includes nucleolar protein 4 (Nop4p or Nop77p) encoded by YPL043W from Saccharomyces cerevisiae. It is an essential nucleolar protein involved in processing and maturation of 27S pre-rRNA and biogenesis of 60S ribosomal subunits. Nop4p also contains four RRMs.


Pssm-ID: 409849 [Multi-domain]  Cd Length: 83  Bit Score: 36.04  E-value: 7.42e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATEQELRQLFS--GQEGFRRLSFrNKNTtsnGHSHGpMCFVEFDDVSFATRALAE-----------LYGR 605
Cdd:cd12415    2 TVFIRNLSFDTTEEDLKEFFSkfGEVKYARIVL-DKDT---GHSKG-TAFVQFKTKESADKCIEAandesedgglvLDGR 76

                 ..
gi 767227475 606 QL 607
Cdd:cd12415   77 KL 78
RRM3_RAVER cd12390
RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and ...
539-633 7.63e-03

RNA recognition motif 3 (RRM3) found in ribonucleoprotein PTB-binding raver-1, raver-2 and similar proteins; This subfamily corresponds to the RRM3 of raver-1 and raver-2. Raver-1 is a ubiquitously expressed heterogeneous nuclear ribonucleoprotein (hnRNP) that serves as a co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. It shuttles between the cytoplasm and the nucleus and can accumulate in the perinucleolar compartment, a dynamic nuclear substructure that harbors PTB. Raver-1 also modulates focal adhesion assembly by binding to the cytoskeletal proteins, including alpha-actinin, vinculin, and metavinculin (an alternatively spliced isoform of vinculin) at adhesion complexes, particularly in differentiated muscle tissue. Raver-2 is a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It shows high sequence homology to raver-1. Raver-2 exerts a spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Both, raver-1 and raver-2, contain three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. They binds to RNA through the RRMs. In addition, the two [SG][IL]LGxxP motifs serve as the PTB-binding motifs in raver1. However, raver-2 interacts with PTB through the SLLGEPP motif only.


Pssm-ID: 409824 [Multi-domain]  Cd Length: 91  Bit Score: 36.06  E-value: 7.63e-03
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 767227475 539 TLYVGNLPSDATE-QELRQLFS--GQEGFRRLSFRnknttsNGHSHGpMCFVEFDDVSFATRALAELYGRQLPRSTvssk 615
Cdd:cd12390    4 CLFVDRLPKDFRDgSELRKLFSqvGKPTFCQLAMG------NGVPRG-FAFVEFASAEDAEEAQQLLNGHDLQGSP---- 72
                         90
                 ....*....|....*...
gi 767227475 616 ggIRLSFSkNPlGVRGPN 633
Cdd:cd12390   73 --IRVSFG-NP-GRPGAS 86
RRM3_SHARP cd12350
RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and ...
539-612 8.01e-03

RNA recognition motif 3 (RRM3) found in SMART/HDAC1-associated repressor protein (SHARP) and similar proteins; This subfamily corresponds to the RRM3 of SHARP, also termed Msx2-interacting protein (MINT), or SPEN homolog, an estrogen-inducible transcriptional repressor that interacts directly with the nuclear receptor corepressor SMRT, histone deacetylases (HDACs) and components of the NuRD complex. SHARP recruits HDAC activity and binds to the steroid receptor RNA coactivator SRA through four conserved N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), further suppressing SRA-potentiated steroid receptor transcription activity. Thus, SHARP has the capacity to modulate both liganded and nonliganded nuclear receptors. SHARP also has been identified as a component of transcriptional repression complexes in Notch/RBP-Jkappa signaling pathways. In addition to the N-terminal RRMs, SHARP possesses a C-terminal SPOC domain (Spen paralog and ortholog C-terminal domain), which is highly conserved among Spen proteins.


Pssm-ID: 409786 [Multi-domain]  Cd Length: 74  Bit Score: 35.46  E-value: 8.01e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 767227475 539 TLYVGNLPSDATEQELRQLFsgqEGFRRLSFRNKNTTSNGHSHGpmcFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:cd12350    4 TLFIGNLEKTTTYGDLRNIF---ERFGEIIDIDIKKQNGNPQYA---FLQYCDIASVVKAIKKMDGEYLGNNRL 71
RRM2_RAVER2 cd12666
RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); ...
540-612 9.48e-03

RNA recognition motif 2 (RRM2) found in vertebrate ribonucleoprotein PTB-binding 2 (raver-2); This subgroup corresponds to the RRM2 of raver-2, a novel member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. It is present in vertebrates and shows high sequence homology to raver-1, a ubiquitously expressed co-repressor of the nucleoplasmic splicing repressor polypyrimidine tract-binding protein (PTB)-directed splicing of select mRNAs. In contrast, raver-2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is mainly limited to differentiated neurons and glia cells. Although it displays nucleo-cytoplasmic shuttling in heterokaryons, raver2 localizes to the nucleus in glia cells and neurons. Raver-2 can interact with PTB and may participate in PTB-mediated RNA-processing. However, there is no evidence indicating that raver-2 can bind to cytoplasmic proteins. Raver-2 contains three N-terminal RNA recognition motifs (RRMs), also termed RBDs (RNA binding domains) or RNPs (ribonucleoprotein domains), two putative nuclear localization signals (NLS) at the N- and C-termini, a central leucine-rich region, and a C-terminal region harboring two [SG][IL]LGxxP motifs. Raver-2 binds to PTB through the SLLGEPP motif only, and binds to RNA through its RRMs.


Pssm-ID: 410067 [Multi-domain]  Cd Length: 77  Bit Score: 35.63  E-value: 9.48e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 767227475 540 LYVGNLPSDATEQELRQLFSGQEGFRRLSFRNKNTTsnGHSHGpMCFVEFDDVSFATRALAELYGRQLPRSTV 612
Cdd:cd12666    2 LCITNLPISFTLQEFEELVRAYGNIERCFLVYSEVT--GHSKG-YGFVEYMKKDSAAKARLELLGKQLGESSL 71
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH