IscR-regulated protein YhgI; IscR (TIGR02010) is an iron-sulfur cluster-binding ...
8-198
3.11e-137
IscR-regulated protein YhgI; IscR (TIGR02010) is an iron-sulfur cluster-binding transcriptional regulator (see Genome Property GenProp0138). Members of this protein family include YhgI, whose expression is under control of IscR, and show sequence similarity to IscA, a known protein of iron-sulfur cluster biosynthesis. These two lines of evidence strongly suggest a role as an iron-sulfur cluster biosynthesis protein. An older study designated this protein GntY and suggested a role for it and for the product of an adjacent gene, based on complementation studies, in gluconate utilization. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other]
Pssm-ID: 132384 [Multi-domain] Cd Length: 190 Bit Score: 381.28 E-value: 3.11e-137
NifU-like domain; This is an alignment of the carboxy-terminal domain. This is the only common ...
117-182
8.47e-19
NifU-like domain; This is an alignment of the carboxy-terminal domain. This is the only common region between the NifU protein from nitrogen-fixing bacteria and rhodobacterial species. The biochemical function of NifU is unknown.
Pssm-ID: 460066 [Multi-domain] Cd Length: 67 Bit Score: 76.32 E-value: 8.47e-19
IscR-regulated protein YhgI; IscR (TIGR02010) is an iron-sulfur cluster-binding ...
8-198
3.11e-137
IscR-regulated protein YhgI; IscR (TIGR02010) is an iron-sulfur cluster-binding transcriptional regulator (see Genome Property GenProp0138). Members of this protein family include YhgI, whose expression is under control of IscR, and show sequence similarity to IscA, a known protein of iron-sulfur cluster biosynthesis. These two lines of evidence strongly suggest a role as an iron-sulfur cluster biosynthesis protein. An older study designated this protein GntY and suggested a role for it and for the product of an adjacent gene, based on complementation studies, in gluconate utilization. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other]
Pssm-ID: 132384 [Multi-domain] Cd Length: 190 Bit Score: 381.28 E-value: 3.11e-137
NifU-like domain; This is an alignment of the carboxy-terminal domain. This is the only common ...
117-182
8.47e-19
NifU-like domain; This is an alignment of the carboxy-terminal domain. This is the only common region between the NifU protein from nitrogen-fixing bacteria and rhodobacterial species. The biochemical function of NifU is unknown.
Pssm-ID: 460066 [Multi-domain] Cd Length: 67 Bit Score: 76.32 E-value: 8.47e-19
Iron-sulphur cluster biosynthesis; This family is involved in iron-sulphur cluster ...
7-105
1.86e-14
Iron-sulphur cluster biosynthesis; This family is involved in iron-sulphur cluster biosynthesis. Its members include proteins that are involved in nitrogen fixation such as the HesB and HesB-like proteins.
Pssm-ID: 426304 Cd Length: 111 Bit Score: 66.52 E-value: 1.86e-14
Iron-sulfur cluster assembly accessory protein; Proteins in this subfamily appear to be ...
10-103
7.35e-11
Iron-sulfur cluster assembly accessory protein; Proteins in this subfamily appear to be associated with the process of FeS-cluster assembly. The HesB proteins are associated with the nif gene cluster and the Rhizobium gene IscN has been shown to be required for nitrogen fixation. Nitrogenase includes multiple FeS clusters and many genes for their assembly. The E. coli SufA protein is associated with SufS, a NifS homolog and SufD which are involved in the FeS cluster assembly of the FhnF protein. The Azotobacter protein IscA (homologs of which are also found in E.coli) is associated which IscS, another NifS homolog and IscU, a nifU homolog as well as other factors consistent with a role in FeS cluster chemistry. A homolog from Geobacter contains a selenocysteine in place of an otherwise invariant cysteine, further suggesting a role in redox chemistry. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other]
Pssm-ID: 272875 [Multi-domain] Cd Length: 105 Bit Score: 56.82 E-value: 7.35e-11
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options