NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|194387268|dbj|BAG59998|]
View 

unnamed protein product [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
PX_domain super family cl02563
The Phox Homology domain, a phosphoinositide binding module; The PX domain is a ...
122-140 2.18e-05

The Phox Homology domain, a phosphoinositide binding module; The PX domain is a phosphoinositide (PI) binding module involved in targeting proteins to membranes. Proteins containing PX domains interact with PIs and have been implicated in highly diverse functions such as cell signaling, vesicular trafficking, protein sorting, lipid modification, cell polarity and division, activation of T and B cells, and cell survival. Many members of this superfamily bind phosphatidylinositol-3-phosphate (PI3P) but in some cases, other PIs such as PI4P or PI(3,4)P2, among others, are the preferred substrates. In addition to protein-lipid interaction, the PX domain may also be involved in protein-protein interaction, as in the cases of p40phox, p47phox, and some sorting nexins (SNXs). The PX domain is conserved from yeast to humans and is found in more than 100 proteins. The majority of PX domain-containing proteins are SNXs, which play important roles in endosomal sorting.


The actual alignment was detected with superfamily member cd07301:

Pssm-ID: 470617  Cd Length: 112  Bit Score: 41.33  E-value: 2.18e-05
                         10
                 ....*....|....*....
gi 194387268 122 LLFEVTSANVVKDPPSKYV 140
Cdd:cd07301    1 LLFEVTDANVVQDAHSKYV 19
 
Name Accession Description Interval E-value
PX_SNX21 cd07301
The phosphoinositide binding Phox Homology domain of Sorting Nexin 21; The PX domain is a ...
122-140 2.18e-05

The phosphoinositide binding Phox Homology domain of Sorting Nexin 21; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development.


Pssm-ID: 132834  Cd Length: 112  Bit Score: 41.33  E-value: 2.18e-05
                         10
                 ....*....|....*....
gi 194387268 122 LLFEVTSANVVKDPPSKYV 140
Cdd:cd07301    1 LLFEVTDANVVQDAHSKYV 19
 
Name Accession Description Interval E-value
PX_SNX21 cd07301
The phosphoinositide binding Phox Homology domain of Sorting Nexin 21; The PX domain is a ...
122-140 2.18e-05

The phosphoinositide binding Phox Homology domain of Sorting Nexin 21; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. Some SNXs are localized in early endosome structures such as clathrin-coated pits, while others are located in late structures of the endocytic pathway. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development.


Pssm-ID: 132834  Cd Length: 112  Bit Score: 41.33  E-value: 2.18e-05
                         10
                 ....*....|....*....
gi 194387268 122 LLFEVTSANVVKDPPSKYV 140
Cdd:cd07301    1 LLFEVTDANVVQDAHSKYV 19
PX_SNX20_21_like cd07279
The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21; The PX domain ...
122-140 1.29e-03

The phosphoinositide binding Phox Homology domain of Sorting Nexins 20 and 21; The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. This subfamily consists of SNX20, SNX21, and similar proteins. SNX20 interacts with P-Selectin glycoprotein ligand-1 (PSGL-1), a surface-expressed mucin that acts as a ligand for the selectin family of adhesion proteins. It may function in the sorting and cycling of PSGL-1 into endosomes. SNX21, also called SNX-L, is distinctly and highly-expressed in fetal liver and may be involved in protein sorting and degradation during embryonic liver development.


Pssm-ID: 132812  Cd Length: 112  Bit Score: 36.54  E-value: 1.29e-03
                         10
                 ....*....|....*....
gi 194387268 122 LLFEVTSANVVKDPPSKYV 140
Cdd:cd07279    1 LKFEIVSARTVKEGEKKYV 19
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH