NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|225898004|dbj|BAH30334|]
View 

hypothetical protein, partial [Arabidopsis thaliana]

Protein Classification

bZIP transcription factor( domain architecture ID 229439)

basic leucine zipper (bZIP) transcription factor binds to the promoter regions of genes to control their expression

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
bZIP super family cl21462
Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and ...
173-218 9.19e-07

Basic leucine zipper (bZIP) domain of bZIP transcription factors: a DNA-binding and dimerization domain; Basic leucine zipper (bZIP) factors comprise one of the most important classes of enhancer-type transcription factors. They act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes including cell survival, learning and memory, lipid metabolism, and cancer progression, among others. They also play important roles in responses to stimuli or stress signals such as cytokines, genotoxic agents, or physiological stresses. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


The actual alignment was detected with superfamily member cd14703:

Pssm-ID: 473870 [Multi-domain]  Cd Length: 52  Bit Score: 44.87  E-value: 9.19e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 225898004 173 KRI--KHQNAHRARLRRLEYISDLERTIQVLQVEGCEMSSAIHYLDQQ 218
Cdd:cd14703    3 KRIlaNRQSAQRSRERKLQYISELERKVQTLQTEVATLSAQLALLEQE 50
 
Name Accession Description Interval E-value
bZIP_plant_RF2 cd14703
Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and ...
173-218 9.19e-07

Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of plant bZIP transciption factors with similarity to Oryza sativa RF2a and RF2b, which are important for plant development. They interact with, as homodimers or heterodimers with each other, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter, which is regulated by sequence-specific DNA-binding proteins that bind to the essential cis element BoxII. RF2a and RF2b show differences in binding affinities to BoxII, expression patterns in different rice organs, and subcellular localization. Transgenic rice with increased RF2a and RF2b display increased resistance to rice tungro disease (RTD) with no impact on plant development. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269851 [Multi-domain]  Cd Length: 52  Bit Score: 44.87  E-value: 9.19e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 225898004 173 KRI--KHQNAHRARLRRLEYISDLERTIQVLQVEGCEMSSAIHYLDQQ 218
Cdd:cd14703    3 KRIlaNRQSAQRSRERKLQYISELERKVQTLQTEVATLSAQLALLEQE 50
 
Name Accession Description Interval E-value
bZIP_plant_RF2 cd14703
Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and ...
173-218 9.19e-07

Basic leucine zipper (bZIP) domain of Plant RF2-like transcription factors: a DNA-binding and dimerization domain; This subfamily is composed of plant bZIP transciption factors with similarity to Oryza sativa RF2a and RF2b, which are important for plant development. They interact with, as homodimers or heterodimers with each other, and activate transcription from the RTBV (rice tungro bacilliform virus) promoter, which is regulated by sequence-specific DNA-binding proteins that bind to the essential cis element BoxII. RF2a and RF2b show differences in binding affinities to BoxII, expression patterns in different rice organs, and subcellular localization. Transgenic rice with increased RF2a and RF2b display increased resistance to rice tungro disease (RTD) with no impact on plant development. bZIP factors act in networks of homo and heterodimers in the regulation of a diverse set of cellular processes. The bZIP structural motif contains a basic region and a leucine zipper, composed of alpha helices with leucine residues 7 amino acids apart, which stabilize dimerization with a parallel leucine zipper domain. Dimerization of leucine zippers creates a pair of the adjacent basic regions that bind DNA and undergo conformational change. Dimerization occurs in a specific and predictable manner resulting in hundreds of dimers having unique effects on transcription.


Pssm-ID: 269851 [Multi-domain]  Cd Length: 52  Bit Score: 44.87  E-value: 9.19e-07
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*...
gi 225898004 173 KRI--KHQNAHRARLRRLEYISDLERTIQVLQVEGCEMSSAIHYLDQQ 218
Cdd:cd14703    3 KRIlaNRQSAQRSRERKLQYISELERKVQTLQTEVATLSAQLALLEQE 50
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH